Take Class 12 Tuition from the Best Tutors
Search in
Ask a Question
Post a LessonAnswered on 13/04/2024 Learn Unit VII: p - Block Elements
Nazia Khanum
Red phosphorus is less reactive than white phosphorus due to differences in their molecular structures and arrangements of atoms. White phosphorus consists of tetrahedral P4 molecules, each containing four phosphorus atoms bonded together in a highly strained, reactive structure. These P4 molecules are held together by weak van der Waals forces.
In contrast, red phosphorus has a polymeric structure, with long chains or layers of phosphorus atoms bonded together in a more stable arrangement. This structure makes it less prone to spontaneous combustion and less reactive with other substances compared to white phosphorus.
Additionally, white phosphorus is highly reactive because it readily reacts with oxygen in the air to form phosphorus pentoxide, producing intense heat and light, which can lead to spontaneous ignition. Red phosphorus, on the other hand, is much less reactive with oxygen and requires higher temperatures to ignite.
Answered on 13/04/2024 Learn Unit VII: p - Block Elements
Nazia Khanum
Nitrogen dioxide (NO2NO2) dimerizes to form dinitrogen tetroxide (N2O4N2O4) due to the presence of unpaired electrons on each nitrogen atom in the NO2NO2 molecule. This dimerization process is a result of the tendency of molecules with unpaired electrons to pair up and form more stable configurations.
In the gas phase, NO2NO2 exists predominantly as a reddish-brown dimer, N2O4N2O4, which is colorless. The dimerization reaction can be represented as:
2NO2⇌N2O42NO2⇌N2O4
This process is reversible, meaning that N2O4N2O4 can dissociate back into NO2NO2 molecules. The equilibrium between NO2NO2 and N2O4N2O4 depends on factors such as temperature, pressure, and concentration.
The dimerization of NO2NO2 to form N2O4N2O4 is an important reaction in atmospheric chemistry. In polluted urban environments, NO2NO2 is often emitted from vehicles and industrial sources. When NO2NO2 reacts with other pollutants and undergoes dimerization to form N2O4N2O4, it can contribute to the formation of smog and other harmful atmospheric conditions.
Answered on 13/04/2024 Learn Unit VII: p - Block Elements
Nazia Khanum
In H3PO2, also known as hypophosphorous acid, the oxidation number of hydrogen (H) is typically +1.
The sum of the oxidation numbers in a neutral molecule must equal zero. Since there are three hydrogen atoms, each with an oxidation number of +1, their total contribution is +3.
For oxygen (O), the typical oxidation number is -2, except in peroxides and when it's bonded to fluorine. In H3PO2, oxygen's oxidation number is -1.
Given that the overall charge of the molecule is zero, and knowing the oxidation numbers of hydrogen and oxygen, you can calculate the oxidation number of phosphorus (P).
Let's denote the oxidation number of phosphorus as xx:
(+1×3)+(−1×2)+x=0(+1×3)+(−1×2)+x=0
3−2+x=03−2+x=0
1+x=01+x=0
x=−1x=−1
So, in H3PO2, the oxidation number of phosphorus is -1.
Take Class 12 Tuition from the Best Tutors
Answered on 13/04/2024 Learn Unit VII: p - Block Elements
Nisarg
Make Fitness Your Lifestyle With Nisarg Khatri
Sure! The molecule you're referring to is ozone (O3). It consists of three oxygen atoms bonded together. Here's a simple representation of its structure:
O / \ O = O
Answered on 13/04/2024 Learn Unit VII: p - Block Elements
Nazia Khanum
Fluorine, being the most electronegative element on the periodic table, does not exhibit any positive oxidation state because it strongly attracts electrons. In chemical reactions, fluorine tends to gain electrons rather than lose them, leading to negative oxidation states. Its high electronegativity makes it very difficult for fluorine to lose electrons and form positive oxidation states. Consequently, in most compounds, fluorine exists with an oxidation state of -1, where it gains an electron to complete its valence shell.
read lessAnswered on 13/04/2024 Learn Unit VII: p - Block Elements
Nazia Khanum
Nitrogen is indeed more inert compared to phosphorus, primarily due to differences in their atomic structures and the stability of their compounds.
Bond Strength: Nitrogen forms a very strong triple bond (N≡N) in molecular nitrogen (N2), which is difficult to break. This makes nitrogen gas quite unreactive under normal conditions. Phosphorus, on the other hand, tends to form weaker single bonds (P-P) in its elemental form (P4), making it more reactive.
Electronegativity: Nitrogen has a higher electronegativity compared to phosphorus. This means that nitrogen atoms attract electrons more strongly, which stabilizes the molecules they form and makes them less prone to reacting with other substances.
Size of Atom: Nitrogen atoms are smaller than phosphorus atoms, which affects their ability to form stable bonds. Nitrogen's smaller size allows for stronger overlap of atomic orbitals in the formation of multiple bonds, contributing to the stability of nitrogen compounds.
Hybridization: Nitrogen often undergoes sp2 hybridization, leading to planar geometry in many of its compounds. This geometric arrangement can enhance the stability of nitrogen compounds. Phosphorus, however, can exhibit various hybridizations and geometries, which may render its compounds more reactive.
These factors collectively contribute to the relative inertness of nitrogen compared to phosphorus. However, despite nitrogen's inertness in its diatomic form, it can react vigorously under certain conditions to form a wide variety of compounds, especially when it reacts with highly reactive elements or under specific catalytic conditions.
Take Class 12 Tuition from the Best Tutors
Answered on 13/04/2024 Learn Unit VII: p - Block Elements
Nazia Khanum
Between PH3 (phosphine) and H2S (hydrogen sulfide), H2S is more acidic.
Acidity is typically measured by the ease with which a compound donates a proton (H⁺ ion) in solution. In both PH3 and H2S, the central atom (phosphorus in PH3 and sulfur in H2S) is bonded to three hydrogen atoms. However, the central atoms in these molecules differ in electronegativity.
Sulfur is more electronegative than phosphorus, meaning it has a stronger pull on the shared electrons in the hydrogen-sulfur bonds compared to phosphorus in the hydrogen-phosphorus bonds. This results in the hydrogen-sulfur bond being more polarized, with a partial positive charge on the hydrogen atom.
Consequently, the hydrogen atom in H2S is more easily ionizable (loses a proton) compared to the hydrogen atom in PH3. Therefore, H2S is considered a stronger acid compared to PH3.
Answered on 13/04/2024 Learn Unit VIII: d and f Block Elements
Nazia Khanum
The "lanthanoid contraction" refers to a phenomenon observed in the periodic table involving the contraction in atomic and ionic radii as you move across the lanthanide series (also known as the rare earth elements) from left to right.
This contraction occurs due to the poor shielding effect of f-electrons in the lanthanoid series. As electrons are added to the f-orbitals, they are not very effective at shielding the increasing nuclear charge from the outermost s- and p-electrons. As a result, the effective nuclear charge experienced by the outer electrons increases, leading to a contraction in the size of the atoms and ions as you move across the lanthanide series.
The lanthanoid contraction has significant consequences in various chemical properties, including ionization energy, atomic and ionic radii, and complex formation.
Answered on 13/04/2024 Learn Unit VIII: d and f Block Elements
Nazia Khanum
Transition elements exhibit variable oxidation states due to the presence of incompletely filled d orbitals in their atoms. These d orbitals can participate in bonding and can gain or lose electrons to form compounds with different oxidation states.
The number of oxidation states displayed by transition metals is often related to their electronic configurations. Transition metals have multiple incompletely filled d orbitals, which can easily lose or gain electrons to achieve a stable configuration. This flexibility allows them to exhibit a range of oxidation states.
For example, iron (Fe) can form compounds where it has an oxidation state of +2 or +3. In the +2 oxidation state, iron loses two electrons from its 4s orbital, while in the +3 oxidation state, it loses three electrons from both its 4s and 3d orbitals. Similarly, elements like chromium (Cr) can exhibit oxidation states ranging from -2 to +6.
The variability in oxidation states allows transition metals to form a wide variety of compounds with different properties and reactivities, making them essential in many chemical reactions and industrial processes.
Take Class 12 Tuition from the Best Tutors
Answered on 13/04/2024 Learn Unit VIII: d and f Block Elements
Nazia Khanum
The oxidation state of manganese (Mn) in its oxo-anion can be equal to its group number, which is +7. So, the formula of the oxo-anion would be MnO₄^(-), which is called permanganate ion.
UrbanPro.com helps you to connect with the best Class 12 Tuition in India. Post Your Requirement today and get connected.
Ask a Question
The best tutors for Class 12 Tuition Classes are on UrbanPro
The best Tutors for Class 12 Tuition Classes are on UrbanPro