I am very expert in teaching the basics with simple examples and make to understand the concepts very simple way. It will helpful for the students...
I teach each student with utmost care. Students love my classes because it is very interactive and informative. Class 12 is very important not only...
I teach accountancy with a driven practical of the subject. I encourage my students to research the theory through brainstorming sessions. I enable...
Do you need help in finding the best teacher matching your requirements?
Post your requirement nowI have been providing mentorship to students since 9 years fron now and it let helps my students to. score above 90% in boards examination and perform...
I have been imparting knowledge globally through UrbanPro.com, reaching students far and wide. Currently, I am serving as a Mathematics PGT at a reputed...
I am a Associate professor at Degree college, handled Degree classes in Accounting. Financial Accounting, corporate Accounting , Advanced Accounting...
I m in teaching from 22 years and author of super20 sample paper, Examguru book and chapterwise book of accountancy for full marks pvt. Ltd. From...
Hello, my name is Atulya Kumar. I have completed my engineering from IIT (ISM), Dhanbad and am currently pursuing a PhD in Civil Engineering at IIT...
I am well aware how to use keywords to solve questions in mcq's and case study. I have good knowledge and presentation of my subject. Students can...
A Highly talented Chemistry teacher with excellent communication skills demonstrated by 11 years of teaching experience. Strong theoretical and good...
Maya attended Class 12 Tuition
"A very good teacher. "
Swathi attended Class 12 Tuition
"vijayan sir has immense sincerity towards teaching. He is really good in making concepts..."
Lakshman attended Class 12 Tuition
"i use to hate phy..when i entered 12th..but after i started my tution with vijayan..."
Hemagowri attended Class 12 Tuition
"Vijayan Sir is very dedicated and sincere. Teaches the concepts really well and..."
Student attended Class 12 Tuition
"Provides complete knowledge for the subject and helps a lot during examination "
Manya attended Class 12 Tuition
"I learnt a lot and my paper went very well of CBSE 2013.Jagdish explains maths concept..."
Bala attended Class 12 Tuition
"sir is very good teacher. different short cut methods sir will use.we can learn quikly"
Jayvardhan attended Class 12 Tuition
"Ya off course his classes are amazing and I had a lot of individual attendence and..."
Ask a Question
Post a LessonAnswered on 13/04/2024 Learn CBSE/Class 12/Science/Chemistry/Unit VIII: d and f Block Elements
Nazia Khanum
Heating (NH4)2Cr2O7, also known as ammonium dichromate, leads to a spectacular chemical reaction. The compound decomposes exothermically, producing green chromium(III) oxide (Cr2O3), nitrogen gas (N2), and water vapor (H2O) as products. This reaction is often used as a demonstration in chemistry due to the vibrant green sparks and the visible release of gas. It's sometimes called the "volcano experiment" due to its resemblance to a volcanic eruption. However, it's important to conduct this experiment in a controlled environment due to the release of toxic chromium compounds and nitrogen oxides.
read lessAnswered on 13/04/2024 Learn CBSE/Class 12/Science/Chemistry/Unit VIII: d and f Block Elements
Nazia Khanum
Answered on 13/04/2024 Learn CBSE/Class 12/Science/Chemistry/Unit VIII: d and f Block Elements
Nazia Khanum
The increase in density from titanium (Z = 22) to copper (Z = 29) in the first series of transition elements can be explained by several factors:
Atomic Mass: As you move from titanium to copper in the periodic table, the atomic mass generally increases due to the addition of more protons, neutrons, and electrons. Since density is mass per unit volume, an increase in atomic mass tends to increase density.
Atomic Radius: While the atomic radius generally decreases across a period in the periodic table due to increasing effective nuclear charge, the increase in atomic mass across the transition metals offsets this effect to some extent. As you move from titanium to copper, the increase in atomic mass generally outweighs the decrease in atomic radius, contributing to the increase in density.
Crystal Structure: Transition metals typically have a close-packed crystal structure, which means that their atoms are densely packed together in a regular pattern. Changes in atomic size and mass can influence how tightly packed these atoms are, affecting the density of the material.
Electron Configuration: Transition metals have complex electron configurations, with electrons occupying different sublevels within the d-block. Changes in electron configuration can influence the interactions between atoms and hence affect the density of the material.
Transition Metals' Special Properties: Transition metals often exhibit unique properties such as high melting points, hardness, and metallic bonding characteristics, all of which can influence the density of the elements in this series.
Overall, the increase in density from titanium to copper in the first series of transition elements is a result of various interplaying factors including atomic mass, atomic radius, crystal structure, electron configuration, and special properties of transition metals.
Answered on 13/04/2024 Learn CBSE/Class 12/Science/Chemistry/Unit VIII: d and f Block Elements
Nazia Khanum
(i) Transition elements generally form colored compounds:
The color exhibited by transition metal compounds arises from the d-d transition, which involves the movement of electrons between the d orbitals of the metal ions. Transition metals have partially filled d orbitals, which allow for the absorption of visible light. When light strikes a transition metal complex, it can promote an electron from a lower-energy d orbital to a higher-energy d orbital, resulting in the absorption of certain wavelengths of light and the reflection or transmission of others. The color observed depends on the energy difference between the d orbitals involved in the transition.
The intensity and nature of the color can be influenced by various factors such as the oxidation state of the metal ion, the ligands surrounding the metal ion, and the coordination geometry of the complex. Ligands with different electron-donating abilities can lead to different splitting patterns of the d orbitals, resulting in different absorption spectra and hence different colors.
(ii) Zinc is not regarded as a transition element:
Zinc is often not considered a transition element because it lacks partially filled d orbitals in its common oxidation states. In its most common oxidation state, +2, the 3d orbitals are completely filled, which means there are no available d electrons for d-d transitions to occur. Therefore, zinc typically forms colorless compounds.
Transition metals, by definition, have incompletely filled d orbitals in at least one oxidation state, which allows them to exhibit characteristic transition metal properties such as forming colored compounds and acting as catalysts. Since zinc does not fulfill this criterion, it is often excluded from the list of transition elements despite being located in the d-block of the periodic table.
Answered on 13/04/2024 Learn CBSE/Class 12/Science/Chemistry/Unit VIII: d and f Block Elements
Nazia Khanum
(i) Copper (I) ion is not known in aqueous solution primarily because copper tends to exist in the +2 oxidation state in aqueous solutions. This is due to the relative stability of the Cu(II) oxidation state compared to Cu(I) in aqueous environments. The standard reduction potential for the Cu(II)/Cu(I) couple is higher than that for many other metal ions, making the Cu(II) state more stable in water. Additionally, Cu(II) ions readily hydrolyze in water, forming insoluble Cu(OH)₂, further reducing the concentration of Cu(I) ions in solution.
(ii) Actinoids exhibit a greater range of oxidation states than lanthanoids due to the presence of f-orbitals in their electron configurations. Actinoid elements have more extended series of f-orbitals available for electron configuration, leading to a greater variety of possible oxidation states. The lanthanoid series, on the other hand, have electrons filling 4f orbitals, which are relatively shielded from the outer environment by the 5s and 5p orbitals. As a result, lanthanoid elements generally exhibit fewer accessible oxidation states compared to actinoids. Additionally, the actinoid series is longer than the lanthanoid series, providing more elements with a greater variety of electron configurations and oxidation states.
Ask a Question