UrbanPro

Learn Data Science from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

Search in

What tools do data scientists use?

Asked by Last Modified  

3 Answers

Follow 2
Answer

Please enter your answer

My teaching experience 12 years

Data scientists use a variety of tools for different tasks, including: 1. Programming languages like Python, R, and SQL for data manipulation, analysis, and visualization. 2. Libraries and frameworks such as pandas, NumPy, scikit-learn, TensorFlow, and PyTorch for machine learning and data analysis. 3....
read more
Data scientists use a variety of tools for different tasks, including: 1. Programming languages like Python, R, and SQL for data manipulation, analysis, and visualization. 2. Libraries and frameworks such as pandas, NumPy, scikit-learn, TensorFlow, and PyTorch for machine learning and data analysis. 3. Data visualization tools like Matplotlib, Seaborn, Plotly, and Tableau for creating visualizations. 4. IDEs (Integrated Development Environments) such as Jupyter Notebook, Spyder, and RStudio for writing and executing code. 5. Big data processing frameworks like Apache Hadoop, Apache Spark, and Apache Flink for handling large-scale data. 6. Database management systems like MySQL, PostgreSQL, MongoDB, and SQLite for storing and querying data. 7. Version control systems like Git for managing codebase and collaboration. 8. Cloud computing platforms such as AWS, Google Cloud Platform, and Microsoft Azure for scalable computing and storage. 9. Data cleaning and preprocessing tools like OpenRefine and Trifacta for preparing data for analysis. 10. Natural Language Processing (NLP) libraries like NLTK and spaCy for processing and analyzing text data. These tools may vary depending on the specific needs and preferences of the data scientist and the requirements of the project. read less
Comments

Data Analyst with 10 years of experience in Fintech, Product ,and IT Services

Data scientists use a variety of tools and technologies to gather, process, analyze, and interpret large datasets. These tools cover different stages of the data science workflow, including data preparation, analysis, visualization, and model building. Here's an overview of some commonly used data science...
read more
Data scientists use a variety of tools and technologies to gather, process, analyze, and interpret large datasets. These tools cover different stages of the data science workflow, including data preparation, analysis, visualization, and model building. Here's an overview of some commonly used data science tools: 1. **Programming Languages**: - **Python**: Popular due to its simplicity and the vast array of libraries for data analysis (Pandas, NumPy), visualization (Matplotlib, Seaborn), and machine learning (Scikit-learn, TensorFlow, PyTorch). - **R**: Favored for statistical analysis, with a rich ecosystem of packages for data manipulation (dplyr, tidyr), visualization (ggplot2), and various statistical models. 2. **Integrated Development Environments (IDEs) and Notebooks**: - **Jupyter Notebook**: An open-source web application that allows the creation and sharing of documents containing live code, equations, visualizations, and narrative text. - **RStudio**: A powerful IDE for R programming, offering tools for plotting, history, debugging, and workspace management. - **Visual Studio Code (VS Code)**: A versatile IDE supporting Python, R, and other languages through extensions, with integrated Git control and debugging features. 3. **Data Wrangling and ETL Tools**: - **Pandas**: A Python library providing high-performance, easy-to-use data structures, and data analysis tools. - **Apache Spark**: An open-source distributed computing system that provides an interface for programming entire clusters with implicit data parallelism and fault tolerance. - **Talend**: A data integration tool that provides ETL and data cleansing capabilities. 4. **Database Management Systems**: - **SQL Databases**: Such as MySQL, PostgreSQL, and Microsoft SQL Server, for storing, querying, and managing structured data. - **NoSQL Databases**: Such as MongoDB, Cassandra, and Neo4j, designed for unstructured or semi-structured data, offering flexibility and scalability. 5. **Big Data Technologies**: - **Hadoop**: An open-source framework for distributed storage and processing of large datasets across clusters of computers. - **Apache Kafka**: A distributed streaming platform used for building real-time data pipelines and streaming apps. 6. **Data Visualization Tools**: - **Tableau**: A leading visualization tool that allows users to create interactive and shareable dashboards. - **Power BI**: A business analytics tool by Microsoft, offering data preparation, data discovery, and interactive dashboards. - **D3.js**: A JavaScript library for producing dynamic, interactive data visualizations in web browsers. 7. **Machine Learning and Deep Learning Frameworks**: - **Scikit-learn**: A Python library for machine learning, providing simple and efficient tools for data mining and data analysis. - **TensorFlow** and **PyTorch**: Open-source libraries for machine learning and deep learning applications. This list represents just a fraction of the tools available to data scientists. The choice of tools depends on the specific requirements of the project, the data scientist's familiarity and comfort with the tool, and the task at hand. read less
Comments

Elevating Understanding, One Equation at a Time: Your Path to Mathematical Mastery Begins Here

Data scientists use a variety of tools for different tasks, including: 1. Programming languages like Python, R, and SQL for data manipulation, analysis, and visualization. 2. Libraries and frameworks such as pandas, NumPy, scikit-learn, TensorFlow, and PyTorch for machine learning and data analysis....
read more
Data scientists use a variety of tools for different tasks, including: 1. Programming languages like Python, R, and SQL for data manipulation, analysis, and visualization. 2. Libraries and frameworks such as pandas, NumPy, scikit-learn, TensorFlow, and PyTorch for machine learning and data analysis. 3. Data visualization tools like Matplotlib, Seaborn, Plotly, and Tableau for creating visualizations. 4. IDEs (Integrated Development Environments) such as Jupyter Notebook, Spyder, and RStudio for writing and executing code. 5. Big data processing frameworks like Apache Hadoop, Apache Spark, and Apache Flink for handling large-scale data. 6. Database management systems like MySQL, PostgreSQL, MongoDB, and SQLite for storing and querying data. 7. Version control systems like Git for managing codebase and collaboration. 8. Cloud computing platforms such as AWS, Google Cloud Platform, and Microsoft Azure for scalable computing and storage. 9. Data cleaning and preprocessing tools like OpenRefine and Trifacta for preparing data for analysis. 10. Natural Language Processing (NLP) libraries like NLTK and spaCy for processing and analyzing text data. These tools may vary depending on the specific needs and preferences of the data scientist and the requirements of the project. read less
Comments

View 1 more Answers

Related Questions

I have 2+ yrs working experience in BI domain. Can I pursue Data science for a job change? Will I get Job opportunity as per my experience or not in field of data science? R or python what to chose?
Hi Asish you can choose R or Python selecting programming tools is not criteria learning Deep Analytics is most important you should focus on Mathematicsfor (classification algorithms) statistics(EDA...
Asish
0 0
8
What are Newton's laws?
Newton's First Law states that an object will remain at rest or in uniform motion in a straight line unless acted upon by an external force. It may be seen as a statement about inertia, that objects will...
Meenakshi S.

How to learn Data Science?

Data Science is a vast field. First of all you should learn statistics which is very important in Data Science field. Then you need to learn about basic Data Analytics and concepts. Languauges like SAS,...
Hdhd
0 0
6

Which course should a HR professional go for Data Science R or Data Science Python?

 

If you are from a technical background, do Python. Otherwise, do the R Course.
Aditti
I have been in the teaching field for 4+ years working as an assistant professor now I need to get into a software field. Basically, I doesn't know much about programming. I need suggestions on which field it would be good.
Hello Narasimha, Nice to hear that you served for 4.5yrs as asst professor and teaching is one of the best jobs you can do. To pursue the career in the software field, It must to have a programming background,...
Narasimha

Now ask question in any of the 1000+ Categories, and get Answers from Tutors and Trainers on UrbanPro.com

Ask a Question

Related Lessons

Code: Gantt Chart: Horizontal bar using matplotlib for tasks with Start Time and End Time
import pandas as pd from datetime import datetimeimport matplotlib.dates as datesimport matplotlib.pyplot as plt def gantt_chart(df_phase): # Now convert them to matplotlib's internal format... ...
R

Rishi B.

0 0
0

Types of Data
The data, which is under our primary consideration, contains a series of observations and measurements, made various subjects, patients, objects or other entities of interest. They might comprise the results...

Topic Modeling in Text Mining : LDA
Latent Dirichlet allocation (LDA) Topic modeling is a method for unsupervised classification of text documents, similar to clustering on numeric data, which finds natural groups of items even when we’re...

1st Lesson -Data Science -Introduction
Here, I am going to cover on - What is Data Science, skills required to a data scientist and general tasks that data scientist do What is Data Science?This is an exciting discipline where we take the...

Things to learn in Python before choosing any Technological Vertical
Day 1: Python Basics Objective: Understand the fundamentals of Python programming language. Variables and Data Types (Integers, Strings, Floats, Booleans) Basic Input and Output (using input()...

Recommended Articles

Almost all of us, inside the pocket, bag or on the table have a mobile phone, out of which 90% of us have a smartphone. The technology is advancing rapidly. When it comes to mobile phones, people today want much more than just making phone calls and playing games on the go. People now want instant access to all their business...

Read full article >

Applications engineering is a hot trend in the current IT market.  An applications engineer is responsible for designing and application of technology products relating to various aspects of computing. To accomplish this, he/she has to work collaboratively with the company’s manufacturing, marketing, sales, and customer...

Read full article >

Software Development has been one of the most popular career trends since years. The reason behind this is the fact that software are being used almost everywhere today.  In all of our lives, from the morning’s alarm clock to the coffee maker, car, mobile phone, computer, ATM and in almost everything we use in our daily...

Read full article >

Microsoft Excel is an electronic spreadsheet tool which is commonly used for financial and statistical data processing. It has been developed by Microsoft and forms a major component of the widely used Microsoft Office. From individual users to the top IT companies, Excel is used worldwide. Excel is one of the most important...

Read full article >

Looking for Data Science Classes?

Learn from the Best Tutors on UrbanPro

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you
X

Looking for Data Science Classes?

The best tutors for Data Science Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Learn Data Science with the Best Tutors

The best Tutors for Data Science Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more