UrbanPro

Take Class 12 Tuition from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

How you will evaluate ∫logxdx.

Asked by Last Modified  

182 Answers

Learn Class 11

Follow 26
Answer

Please enter your answer

∫log x dx = x log x -x Proof : Using integration by parts, ∫udv = uv - ∫vdu In ∫ log x dx, take, u=logx => du= (1/x) . dx ∫dv=∫dx => v=x Now substituting, ∫log x = logx (x) - ∫x . 1/x . dx = logx (x) - ∫dx= x log x -x + C where C is constant.
read more
∫log x dx = x log x -x Proof : Using integration by parts, ∫udv = uv - ∫vdu In ∫ log x dx, take, u=logx => du= (1/x) . dx ∫dv=∫dx => v=x Now substituting, ∫log x = logx (x) - ∫x . 1/x . dx = logx (x) - ∫dx= x log x -x + C where C is constant. read less
1 Comments

1st Class in M.Com(Finance) from CU. Trying to teach young minds for better future.

Now take as first function and 1 as second function. then integrate by parts.
read more
Now take as first function and 1 assecond function. then integrate by parts. read less
1 Comments

Biotechnology graduate and Medical Coder, experienced tutor for Science subjects and Mathematics.

∫log x dx = x log x -x Proof : Using integration by parts, ∫udv = uv - ∫vdu In ∫ log x dx, take, u=logx => du= (1/x) . dx ∫dv=∫dx => v=x Now substituting, ∫log x = logx (x) - ∫x . 1/x . dx = logx (x) - ∫dx= x log x -x + C where C is constant.
read more
∫log x dx = x log x -x Proof : Using integration by parts, ∫udv = uv - ∫vdu In ∫ log x dx, take, u=logx => du= (1/x) . dx ∫dv=∫dx => v=x Now substituting, ∫log x = logx (x) - ∫x . 1/x . dx = logx (x) - ∫dx= x log x -x + C where C is constant. read less
1 Comments

Build Yourself For The Future

Using ILATE RULE where I stands for inverse trigonometric functions L stands for logarithmic functions A stands for algebraic functions T stands for trigonometric functions E stands for exponential functions. Solve this integration using integration by part where consider logx as first function &...
read more
Using ILATE RULE where I stands for inverse trigonometric functions L stands for logarithmic functions A stands for algebraic functions T stands for trigonometric functions E stands for exponential functions. Solve this integration using integration by part where consider logx as first function & 1as second function. Ans- xlogx-x read less
1 Comments

I will try to give my best but its totally depends on you thanks

I= x logx -x +C
Comments

An internationally certified soft skills trainer

Take log x as log x. 1 and use integration by parts ie product rule you will get x log x - x + c.
Comments

Mathematics professional with 4year experience

Just apply ILATE formula and consider it as 1×logx.
Comments

Tutor with 2 years experience in teaching - Maths, English, Social, EVS, Science

The answer to this is 1/x.
Comments

NPTEL Gold Medalist Mechanical Engineering Graduate

Apply the formula of integration by parts .Assume log x as first function and 1 as second function. Write 1 as x raised to the power zero.
Comments

IIM_home_Tuition Tutor Chennai mathematics 100%

It's come from basic formula 1/x+c c is constant.
Comments

View 180 more Answers

Now ask question in any of the 1000+ Categories, and get Answers from Tutors and Trainers on UrbanPro.com

Ask a Question

Related Lessons



Class 11th - Conic sections
Determine the co-ordinates (x,y) of foci for given parabola. y2 = 2(x-1)
G

GOODWILL GATE2IIT

1 0
0

GST Goods and Service Tax Meaning and Type
The goods and services tax (GST) is a tax on goods and services sold domestically for consumption. The tax is included in the final price and paid by consumers at point of sale and passed to the government...

Integration CALCULUS
Integration is the operation of calculating the area between the curve of a function and the x-axis. Integral also includes antiderivative and primitive. Integration works by transforming a function into another function respectively.

Recommended Articles

Looking for Class 12 Tuition ?

Learn from the Best Tutors on UrbanPro

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you
X

Looking for Class 12 Tuition Classes?

The best tutors for Class 12 Tuition Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Take Class 12 Tuition with the Best Tutors

The best Tutors for Class 12 Tuition Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more