UrbanPro

Take Class 12 Tuition from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

differination of |x| in conditions

Asked by Last Modified  

Follow 0
Answer

Please enter your answer

Home Tuitor for Class V to X,Computer,Speaking English,CBSE, ICSE & State Board

Let y = |x| Step 1) Applying first principle ... NOTE:- We shall apply the limit later & now here dx represents delta x. dy/dx = /dx as mentioned we shall apply limit later so currently dy/dx represents Step 2) Multiplying numerator and denominator by we get, /{dx*} Step 3) simplifying...
read more
Let y=|x| Step 1) Applying first principle ... NOTE:- We shall apply the limit later & now here dx represents delta x. dy/dx = [|x+dx| -|x|]/dx as mentioned we shall apply limit later so currently dy/dx represents [delta y/ delta x ] Step 2) Multiplying numerator and denominator by [|x+dx| + |x|] we get, [(x+dx)^2-x^2]/{dx*[|x+dx| +|x|]} Step 3) simplifying [2x*dx+(dx)^2]/{dx*[|x+dx| +|x|]} As we have not yet applied the limit we cancel a common dx term from numerator and denominator. Step 4) What remains is [2x+dx]/[|x+dx| +|x|] Step 5) Now we apply the limit of dx tends to zero Therefore, dy/dx = x/|x| Now for x>0, dy/dx = 1 for x<0, dy/dx = -1 at x=0 the function is not differentiable as dy/dx is not defined. read less
Comments

Tutor

Let y=|x|. Step 1 Applying first principle ... NOTE:- We shall apply the limit later. & Currently dx represents delta x. dy/dx=/dx as mentioned we shall apply limit later so currently dy/dx represents Step 2 multiplying numerator and denominator by we get, /{dx*} Step...
read more
Let y=|x|. Step 1 Applying first principle ... NOTE:- We shall apply the limit later. & Currently dx represents delta x. dy/dx=[|x+dx| -|x|]/dx as mentioned we shall apply limit later so currently dy/dx represents [delta y/ delta x ] Step 2 multiplying numerator and denominator by [|x+dx| + |x|] we get, [(x+dx)^2-x^2]/{dx*[|x+dx| +|x|]} Step 3 simplifying [2x*dx+(dx)^2]/{dx*[|x+dx| +|x|]} as we have not yet applied the limit we can cancel a common dx term from numerator and denominator. Step 4 What remains is [2x+dx]/[|x+dx| +|x|] Step 5 Now we apply the limit of dx tends to zero Therefore, dy/dx=x/|x| Now for x>0, dy/dx=1 for x<0, dy/dx=-1 at x=0 the function is not differentiable as dy/dx is not defined. read less
Comments

"Decoding the World of Physics and Math: 12 Years of Expertise, Powered by a Teaching Enthusiasts"

when x=0- you will get differentiation -1 and when x=0+ you will get differentiation +1 this function is not differentiable at x=0
Comments

Mathematics Professor

Since the absolute value is defined by cases, |x|={x?xif x?0;if x0, x0, for ?x sufficiently close to 0 we will have x+?x>0. So f(x)=|x|=x, and f(x+?x)=|x+?x|=x+?x; plugging that into the limit, we have: lim?x?0f(x+?x)?f(x)?x=lim?x?0|x+?x|?|x|?x=lim?x?0(x+?x)?x?x. You should be able to finish it now. For...
read more
Since the absolute value is defined by cases, |x|={x?xif x?0;if x<0, it makes sense to deal separately with the cases of x>0, x<0, and x=0. For x>0, for ?x sufficiently close to 0 we will have x+?x>0. So f(x)=|x|=x, and f(x+?x)=|x+?x|=x+?x; plugging that into the limit, we have: lim?x?0f(x+?x)?f(x)?x=lim?x?0|x+?x|?|x|?x=lim?x?0(x+?x)?x?x. You should be able to finish it now. For x<0, for ?x sufficiently close to zero we will have x+?x<0; so f(x)=?x and f(x+?x)=?(x+?x). It should again be easy to finish it. The tricky one is x=0. I suggest using one-sided limits. For the limit as ?x?0+, x+?x=?x>0; for ?x?0?, x+?x=?x<0; the (one-sided) limits should now be straightforward. good luck read less
Comments

IIT/BITSAT Decoded !!

Differentiation of |x| is |x|/x , so for positive & negative x you can easily put x with appropriate sign to get the result.
Comments

Tutor

if x>0 it will be 1 and if x<0 then x=-1
Comments

Take positive and negative sign and than differentiate and is 1 and -1 if x>0and x<0.
Comments

Trainer

(d/dx) IxI = IxI/x, which is not continuous.
Comments

If x>=0, Then d|x|/d|y|=1 or else -1
Comments

All that glitter is not gold

1 or -1
Comments

View 25 more Answers

Related Questions

How I know that in a circuit the capacitors are in parallel or in series?
Consider N number of capacitor with +ve and -ve charged plates .If connection to all the plates with similar charges originate from same point, you can consider this can be parallel and if the +ve and...
Somya
What is free energy in thermodynamics?
Free energy is the amount of work that a system can perform.
Ravi Ranjan
Which statement is prepared to know the profitability of the business?
Profitability of a business entity can be estimated through trading p&l account. Where trading account states the gross profit and p&l account states the net profit earned by the entity.
Sumit
0 0
8

Now ask question in any of the 1000+ Categories, and get Answers from Tutors and Trainers on UrbanPro.com

Ask a Question

Related Lessons

Introduction To Accounting: Part 5: Financial Statements
Throughout the year, a number of Business Transactions take place. At the end of the year, any businessman would want to know whether he has made any profit during the year, and if so, what is the amount...

HOW TO REMOVE EXAM FOBIA
EXAMS ARE ALWAYS FEARED THE STUDENTS, BUT THIS FEAR CAN BE OVERCOME. 1. THINK POSITIVE 2. LEARN CONTINUESLY AND REPEAT. 3.STUDY IN EARLY MORNING. 4. TRY TO WRITE WHAT TO REMEBER. 5. NEVER LOSE HOPE...
M

Mohit S.

1 0
0

Adjustments in financial statements or final accounts
ADJUSTMENTS IN FINANCIAL STATEMENTS OR FINAL ACCOUNTS Information given outside the trial balance are known as adjustments. It means journal entry of this adjustment has not been passed yet . treatment...

Reconstitution Of Partnership Admission Of A Partner Important Questions
Unit 2: Reconstitution of partnership admission of a partner: On what occasions does the need for valuation of goodwill arise? Why is it necessary to revalue assets and liabilities at the time of...

Some formulas of algebra
Algebra: 1. (a + b) = a + 2ab + b 2. (a – b) = a – 2ab + b 3. (a + b) (a – b) = a – b 4. (x + a)(x + b) = x + (a + b)x + ab 5. (x + a)(x – b) = x + (a – b)x –...
K

Recommended Articles

Radhe Shyam is a highly skilled accounts and finance trainer with 8 years of experience in teaching. Accounting is challenging for many students and that’s where Radhe Shyam’s expertise comes into play. He helps his students not only in understanding the subject but also advises them on how to overcome the fear of accounts...

Read full article >

Mohammad Wazid is a certified professional tutor for class 11 students. He has 6 years of teaching experience which he couples with an energetic attitude and a vision of making any subject easy for the students. Over the years he has developed skills with a capability of understanding the requirements of the students. This...

Read full article >

Urmila is a passionate teacher with over 8 years of experience in teaching. She is currently pursuing her Ph. D. She provides classes for Class 11, Class 12, MBBS and Medical tuition.  Urmila began her career in teaching long before she became a teacher. She used to provide classes for foreign national students in her college...

Read full article >

Sandhya is a proactive educationalist. She conducts classes for CBSE, PUC, ICSE, I.B. and IGCSE. Having a 6-year experience in teaching, she connects with her students and provides tutoring as per their understanding. She mentors her students personally and strives them to achieve their goals with ease. Being an enthusiastic...

Read full article >

Looking for Class 12 Tuition ?

Learn from the Best Tutors on UrbanPro

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you
X

Looking for Class 12 Tuition Classes?

The best tutors for Class 12 Tuition Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Take Class 12 Tuition with the Best Tutors

The best Tutors for Class 12 Tuition Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more