Find the best tutors and institutes for Class VI-VIII Tuition

Find Class VI-VIII Tuition Tutors & Institutes

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Search for topics

Rational numbers and its properties

Namrata P.
02/07/2017 0 0

In Mathematics a rational number is any number that can be expressed as the quotient or fraction p/q of two integers, a numerator p and a non-zero denominator q. Since q may be equal to 1, every integer is a rational Number.

Properties of addition of rational numbers:

1) closure property

2)commutative property

3)associative property

4)existence of additive identity property

5) existence of additive inverse property of addition of rational numbers.

 

Closure property of addition of rational numbers: The sum of two rational numbers is always a rational number. 

If a/b and c/d are any two rational numbers, then (a/b + c/d) is also a rational number. 


For example:

(i) Consider the rational numbers 1/3 and 3/4 Then, 

(1/3 + 3/4) 

= (4 + 9)/12

= 13/12, is a rational number 

(ii) Consider the rational numbers -5/12 and -1/4 Then, 

(-5/12 + -1/4) 

= {-5 + (-3)}/12

= -8/12 

= -2/3, is a rational number

(iii) Consider the rational numbers -2/3 and 4/5 Then, 

(-2/3 + 4/5) 

= (-10 + 12)/15 

= 2/15, is a rational number



Commutative property of addition of rational numbers:

Two rational numbers can be added in any order. 

Thus for any two rational numbers a/b and c/d, we have

(a/b + c/d) = (c/d + a/b) 

For example: 


(i) (1/2 + 3/4) 

= (2 + 3)/4

=5/4 

and (3/4 + 1/2) 

= (3 + 2)/4

= 5/4

Therefore, (1/2 + 3/4) = (3/4 + 1/2) 

(ii) (3/8 + -5/6) 


= {9 + (-20)}/24 

= -11/24

and (-5/6 + 3/8) 

= {-20 + 9}/24

= -11/24

Therefore, (3/8 + -5/6) = (-5/6 + 3/8) 

(iii) (-1/2 + -2/3) 

= {(-3) + (-4)}/6 

= -7/6

and (-2/3 + -1/2) 

= {(-4) + (-3)}/6

= -7/6

Therefore, (-1/2 + -2/3) = (-2/3 + -1/2) 


Associative property of addition of rational numbers:

While adding three rational numbers, they can be grouped in any order. 

Thus, for any three rational numbers a/b, c/d and e/f, we have 

(a/b + c/d) + e/f = a/b + (c/d + e/f) 

For example:

Consider three rationals -2/3, 5/7 and 1/6 Then, 

{(-2/3 + 5/7) + 1/6} = {(-14 + 15)/21 + 1/6} = (1/21 + 1/6) = (2 + 7)/42

= 9/42 = 3/14

and {(-2/3 + (5/7 + 1/6)} = {-2/3 + (30 + 7)/42} = (-2/3 + 37/42)

= (-28 + 37)/42 = 9/42 = 3/14

Therefore, {(-2/3 + 5/7) + 1/6} = {-2/3 + (5/7 + 1/6)} 


Existence of additive identity property of addition of rational numbers:

0 is a rational number such that the sum of any rational number and 0 is the rational number itself. 

Thus, (a/b + 0) = (0 + a/b) = a/b, for every rational number a/b

0 is called the additive identity for rationals. 


For example: 

(i) (3/5 + 0) = (3/5 + 0/5) = (3 + 0)/5 = 3/5 and similarly, (0 + 3/5) = 3/5

Therefore, (3/5 + 0) = (0 + 3/5) = 3/5

(ii) (-2/3 + 0) = (-2/3 + 0/3) = (-2 + 0)/3 = -2/3 and similarly, (0 + -2/3)

= -2/3

Therefore, (-2/3 + 0) = (0 + -2/3) = -2/3



Existence of additive inverse property of addition of rational numbers:

For every rational number a/b, there exists a rational number –a/b 

such that (a/b + -a/b) = {a + (-a)}/b = 0/b = 0 and similarly, (-a/b + a/b) = 0. 

Thus, (a/b + -a/b) = (-a/b + a/b) = 0. 

-a/b is called the additive inverse of a/b


For example:

(4/7 + -4/7) = {4 + (-4)}/7 = 0/7 = 0 and similarly, (-4/7 + 4/7) = 0

Thus, 4/7 and -4/7 are additive inverses of each other

0 Dislike
Follow 1

Please Enter a comment

Submit

Other Lessons for You

Noun
Noun A noun is a name of any person, place animal or thing. Kinds of noun- Proper noun Common noun Collective noun Abstract noun Material noun Proper noun- It refers to any particular...

Abhay Bajpai | 2 days ago

0 0
0
Innovation: A State-of-the-Science
Innovation research has flourished over the last 30 years. Innovative approaches which might formerly have been seen as inappropriate and disrespectful, have become increasingly sought by organizations...

Chetna S. | 03 Jul

1 0
0
Important Chapter Notes From Matter
Introduction: Anything that occupies space and has mass is called matter. Matter can be divided into two types. Pure substance: It consists of single types of particles which are identical and same...

Soumi Roy | 24 May

0 0
0
How to Do Recurring Fraction Sums
Firstly we need to define recurring decimal as a rational number that does not terminate. Example 1, 0.444444444... Example 2, 0.123123123... A fraction is a number in which the numerator is divided...

Padmini Roy | 19 May

0 0
0
4 digit number's summation after interchanging digits:
Four digit number's summation after interchanging digits: Let us take a 4-digit number represented as abcd. The value of the number is obviously 1000a+100b+10c+d By interchanging the digits such that...

N S Balaji | 03 Apr

0 0
0

Looking for Class VI-VIII Tuition ?

Find best Class VI-VIII Tuition in your locality on UrbanPro.

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you
Sponsored

Find Best Class VI-VIII Tuition ?

Find Now »

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 25 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 6.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more