UrbanPro
true

Take Class 8 Tuition from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

Rational numbers and its properties

N
Namrata P.
02/07/2017 0 0

In Mathematics a rational number is any number that can be expressed as the quotient or fraction p/q of two integers, a numerator p and a non-zero denominator q. Since q may be equal to 1, every integer is a rational Number.

Properties of addition of rational numbers:

1) closure property

2)commutative property

3)associative property

4)existence of additive identity property

5) existence of additive inverse property of addition of rational numbers.

 

Closure property of addition of rational numbers: The sum of two rational numbers is always a rational number. 

If a/b and c/d are any two rational numbers, then (a/b + c/d) is also a rational number. 


For example:

(i) Consider the rational numbers 1/3 and 3/4 Then, 

(1/3 + 3/4) 

= (4 + 9)/12

= 13/12, is a rational number 

(ii) Consider the rational numbers -5/12 and -1/4 Then, 

(-5/12 + -1/4) 

= {-5 + (-3)}/12

= -8/12 

= -2/3, is a rational number

(iii) Consider the rational numbers -2/3 and 4/5 Then, 

(-2/3 + 4/5) 

= (-10 + 12)/15 

= 2/15, is a rational number



Commutative property of addition of rational numbers:

Two rational numbers can be added in any order. 

Thus for any two rational numbers a/b and c/d, we have

(a/b + c/d) = (c/d + a/b) 

For example: 


(i) (1/2 + 3/4) 

= (2 + 3)/4

=5/4 

and (3/4 + 1/2) 

= (3 + 2)/4

= 5/4

Therefore, (1/2 + 3/4) = (3/4 + 1/2) 

(ii) (3/8 + -5/6) 


= {9 + (-20)}/24 

= -11/24

and (-5/6 + 3/8) 

= {-20 + 9}/24

= -11/24

Therefore, (3/8 + -5/6) = (-5/6 + 3/8) 

(iii) (-1/2 + -2/3) 

= {(-3) + (-4)}/6 

= -7/6

and (-2/3 + -1/2) 

= {(-4) + (-3)}/6

= -7/6

Therefore, (-1/2 + -2/3) = (-2/3 + -1/2) 


Associative property of addition of rational numbers:

While adding three rational numbers, they can be grouped in any order. 

Thus, for any three rational numbers a/b, c/d and e/f, we have 

(a/b + c/d) + e/f = a/b + (c/d + e/f) 

For example:

Consider three rationals -2/3, 5/7 and 1/6 Then, 

{(-2/3 + 5/7) + 1/6} = {(-14 + 15)/21 + 1/6} = (1/21 + 1/6) = (2 + 7)/42

= 9/42 = 3/14

and {(-2/3 + (5/7 + 1/6)} = {-2/3 + (30 + 7)/42} = (-2/3 + 37/42)

= (-28 + 37)/42 = 9/42 = 3/14

Therefore, {(-2/3 + 5/7) + 1/6} = {-2/3 + (5/7 + 1/6)} 


Existence of additive identity property of addition of rational numbers:

0 is a rational number such that the sum of any rational number and 0 is the rational number itself. 

Thus, (a/b + 0) = (0 + a/b) = a/b, for every rational number a/b

0 is called the additive identity for rationals. 


For example: 

(i) (3/5 + 0) = (3/5 + 0/5) = (3 + 0)/5 = 3/5 and similarly, (0 + 3/5) = 3/5

Therefore, (3/5 + 0) = (0 + 3/5) = 3/5

(ii) (-2/3 + 0) = (-2/3 + 0/3) = (-2 + 0)/3 = -2/3 and similarly, (0 + -2/3)

= -2/3

Therefore, (-2/3 + 0) = (0 + -2/3) = -2/3



Existence of additive inverse property of addition of rational numbers:

For every rational number a/b, there exists a rational number –a/b 

such that (a/b + -a/b) = {a + (-a)}/b = 0/b = 0 and similarly, (-a/b + a/b) = 0. 

Thus, (a/b + -a/b) = (-a/b + a/b) = 0. 

-a/b is called the additive inverse of a/b


For example:

(4/7 + -4/7) = {4 + (-4)}/7 = 0/7 = 0 and similarly, (-4/7 + 4/7) = 0

Thus, 4/7 and -4/7 are additive inverses of each other

0 Dislike
Follow 1

Please Enter a comment

Submit

Other Lessons for You

अपादान कारक
अपादान कारक जब संज्ञा या सर्वनाम के किसी रूप से किन्हीं दो वस्तुओं के अलग होने का बोध होता है, तब वहां अपादान कारक होता है। अपादान कारक का विभक्ति चिन्ह = से (अलग होना अर्थ में)...

Photosynthesis
What is Photosynthesis? The word photosynthesis can be separated to make two smaller words:"Photo" is the Greek word for "Light," and "synthesis," is the Greek word for "putting together”. You may...

Memorising Formulae
First understand the derivation of the formula. Summarise all the formulaes on a paper and carry it where ever you go in the pocket. You need not open and learn them. Just make sure you see them when ever you get sometime .

Formation of water molecule (H2O)
Each hydrogen atom has only one electron in its outermost shell. Therefore, each hydrogen atom required one more electron to achieve the stable configuration of helium (nearest noble gas). The oxygen atom...

Study tips
1. Study Tip 1: Underlining. 2. Study Tip 2: Make Your Own Study Notes. 3. Study Tip 3: Mind Mapping.
P

Parmeshwar Biradar

0 0
0
X

Looking for Class 8 Tuition Classes?

The best tutors for Class 8 Tuition Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Take Class 8 Tuition with the Best Tutors

The best Tutors for Class 8 Tuition Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more