Find the best tutors and institutes for Class 10 Tuition

Find Best Class 10 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?
Prove that root 2 is an irrational number.

Asked by Last Modified  

Tuition/Class IX-X Tuition

Follow 0
Answer

9 Answers

Please enter your answer

Trainer

Proof: Assume that root 2 = p/q (rational number) squaring on both the sides, 2 =p^2/q^2 p^2= 2q^2 ---(*) p^2 is a perfect square number which can be even or odd. But 2q^2 is only even number so p^2 not is necessarily equal to 2q^2 which is contradictory to the equation (*) so our assumption is... read more
Proof: Assume that root 2 = p/q (rational number) squaring on both the sides, 2 =p^2/q^2 p^2= 2q^2 ---(*) p^2 is a perfect square number which can be even or odd. But 2q^2 is only even number so p^2 not is necessarily equal to 2q^2 which is contradictory to the equation (*) so our assumption is incorrect Hence root is an irrational number. read less
Comments

Tutor

A proof that the square root of 2 is irrational Let's suppose 2 is a rational number. Then we can write it 2 = a/b where a, b are whole numbers, b not zero. We additionally assume that this a/b is simplified to lowest terms, since that can obviously be done with any fraction. Notice that in order... read more
A proof that the square root of 2 is irrational Let's suppose 2 is a rational number. Then we can write it 2 = a/b where a, b are whole numbers, b not zero. We additionally assume that this a/b is simplified to lowest terms, since that can obviously be done with any fraction. Notice that in order for a/b to be in simplest terms, both of a and b cannot be even. One or both must be odd. Otherwise, we could simplify a/b further. From the equality 2 = a/b it follows that 2 = a^2/b^2, or a^2 = 2 · b^2. So the square of a is an even number since it is two times something. From this we know that a itself is also an even number. Why? Because it can't be odd; if a itself was odd, then a · a would be odd too. Odd number times odd number is always odd. Check it if you don't believe me! Okay, if a itself is an even number, then a is 2 times some other whole number. In symbols, a = 2k where k is this other number. We don't need to know what k is; it won't matter. Soon comes the contradiction. If we substitute a = 2k into the original equation 2 = a^2/b^2, this is what we get: 2 = (2k)2/b2 2 = 4k^2/b^2 2*b^2 = 4k^2 b2 = 2k2 This means that b^2 is even, from which follows again that b itself is even. And that is a contradiction!!! WHY is that a contradiction? Because we started the whole process assuming that a/b was simplified to lowest terms, and now it turns out that a and b both would be even. We ended at a contradiction; thus our original assumption (that 2 is rational) is not correct. Therefore 2 cannot be rational. read less
Comments

It can be proved using contradiction.
Comments

School Tuition

Let's suppose ?2 is a rational number. Then we can write it ?2 = a/b where a, b are whole numbers, b not zero. We additionally assume that this a/b is simplified to lowest terms, since that can obviously be done with any fraction. Notice that in order for a/b to be in simplest terms, both of a and... read more
Let's suppose ?2 is a rational number. Then we can write it ?2 = a/b where a, b are whole numbers, b not zero. We additionally assume that this a/b is simplified to lowest terms, since that can obviously be done with any fraction. Notice that in order for a/b to be in simplest terms, both of a and b cannot be even. One or both must be odd. Otherwise, we could simplify a/b further. From the equality ?2 = a/b it follows that 2 = a2/b2, or a2 = 2 · b2. So the square of a is an even number since it is two times something. From this we know that a itself is also an even number. Why? Because it can't be odd; if a itself was odd, then a · a would be odd too. Odd number times odd number is always odd. Check it if you don't believe me! Okay, if a itself is an even number, then a is 2 times some other whole number. In symbols, a = 2k where k is this other number. We don't need to know what k is; it won't matter. Soon comes the contradiction. If we substitute a = 2k into the original equation 2 = a2/b2, this is what we get: 2 = (2k)2/b2 2 = 4k2/b2 2*b2 = 4k2 b2 = 2k2 This means that b2 is even, from which follows again that b itself is even. And that is a contradiction!!! WHY is that a contradiction? Because we started the whole process assuming that a/b was simplified to lowest terms, and now it turns out that a and b both would be even. We ended at a contradiction; thus our original assumption (that ?2 is rational) is not correct. Therefore ?2 cannot be rational. read less
Comments

Personalized CBSE & ICSE Science & Chemistry Coaching.

There are several ways to prove that ?2 (The square root of 2) is an irrational number. Here's a list of 10 different ways to prove it - http://en.wikipedia.org/wiki/Square_root_of_2
Comments

We prove this by contradiction. Assume it to be a rational number, so it can be expressed in the form of a/b where a & b are co-prime integers(Having 1 as only common factor). root 2 = a/b squaring both sides 2 = square of a/ square of b. 2 is an integer, whereas square of a/ square of b is a... read more
We prove this by contradiction. Assume it to be a rational number, so it can be expressed in the form of a/b where a & b are co-prime integers(Having 1 as only common factor). root 2 = a/b squaring both sides 2 = square of a/ square of b. 2 is an integer, whereas square of a/ square of b is a fraction, as a & b are co-prime integers so is square of a & square of b. Thus we arrive at the wrong conclusion. Hence our assumption is wrong. Thus square root of 2 is an irrational number. read less
Comments

Iam an IITIan

Nothing more to add here. the above details should have sufficed hour query. But if you have a doubt that why do we have to prove it by contradiction i have an argument for you. we dont have a direct definition for irrational number. its definition is : a number which is not a rational number. so... read more
Nothing more to add here. the above details should have sufficed hour query. But if you have a doubt that why do we have to prove it by contradiction i have an argument for you. we dont have a direct definition for irrational number. its definition is : a number which is not a rational number. so the motive behind the proof should be to show 2^0.5 not a rational number. rational number : a number which can be expressed a p / q where p,q are non-zero interzers which have gcd = 1 read less
Comments

Physics, Chemistry and Mathematics Teacher

Suppose, to the contrary, that Sqrt were rational. Then Sqrt=m/n for some integers m, n in lowest terms, i.e., m and n have no common factors. Then 2=m2/n2, which implies that m2=2n2. Hence m2 is even, which implies that m is even. Then m=2k for some integer k. So 2=(2k)2/n2, but then 2n2 = 4k2, or... read more
Suppose, to the contrary, that Sqrt[2] were rational. Then Sqrt[2]=m/n for some integers m, n in lowest terms, i.e., m and n have no common factors. Then 2=m2/n2, which implies that m2=2n2. Hence m2 is even, which implies that m is even. Then m=2k for some integer k. So 2=(2k)2/n2, but then 2n2 = 4k2, or n2 = 2k2. So n2 is even. But this means that n must be even, because the square of an odd number cannot be even. We have just showed that both m and n are even, which contradicts the fact that m, n are in lowest terms. Thus our original assumption (that Sqrt[2] is rational) is false, so the Sqrt[2] must be irrational. read less
Comments

Mathematics Trainer

if we try to find the value of root 2, we get a non-terminating non-recurring decimal 1.41421356...this value cannot be written in the form of p/q by any means, hence root 2 is an irrational number.
Comments

View 7 more Answers

Related Questions

25/07/2018
37
Priyanshu asked

INR 3000/-

24/07/2018
134

Now ask question in any of the 1000+ Categories, and get Answers from Tutors and Trainers on UrbanPro.com

Ask a Question

Related Lessons

Private, Public and Joint Sector Enterprises-Class 11 NCERT, Class 9 ICSE,Commercial Studies
CBSE Std XIth Business Studies Classification of Commercial Organisations based on the ownership-

Rajiv Vadera | 01 Jul

0 0
0

Conservation of energy for a falling body
Law of conservation of energy - Energy can neither be created nor be destroyed; it can only be transformed from one form to another. Consider a body of mass m placed at A. h = AB is the height of...

Soumi Roy | 02/12/2018

4 0
0

Financial Accounting
Accounting is the art of recording, classifying, summarising in a significant manner regarding money, transaction & events which are at least in part financial interpreting the result thereof. (AICPA...

Rajeshwari M. | 23/11/2018

1 0
0

Recommended Articles

With the current trend of the world going digital, electronic renaissance is a new movement that is welcomed by the new generation as it helps makes the lives of millions of people easier and convenient. Along with this rapidly changing movement and gaining popularity of Internet, e-Learning is a new tool that emerging...

Read full article >

With the mushrooming of international and private schools, it may seem that the education system of India is healthy. In reality, only 29% of children are sent to the private schools, while the remaining head for government or state funded education. So, to check the reality of Indian education system it is better to look...

Read full article >

If the internet has made it s way to all aspects of human life, no far stands classrooms from it. The boons of internet have entered the classrooms in the form of devices and this penetration of technology in the academic system is termed as e-learning. E-learning is a kind of teaching where computers with internet connection...

Read full article >

Once over with the tenth board exams, a heavy percentage of students remain confused between the three academic streams they have to choose from - science, arts or commerce. Some are confident enough to take a call on this much in advance. But there is no worry if as a student you take time to make choice between - science,...

Read full article >

Looking for Class 10 Tuition ?

Find best Class 10 Tuition in your locality on UrbanPro.

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you

Find Best Class 10 Tuition ?

Find Now »

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 25 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 6.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more