✕

Find the best tutors and institutes for Class 10 Tuition

Find Best Class 10 Tuition

✕

Search for topics

Prove that root 2 is an irrational number.

Follow 0

9 Answers

Proof: Assume that root 2 = p/q (rational number) squaring on both the sides, 2 =p^2/q^2 p^2= 2q^2 ---(*) p^2 is a perfect square number which can be even or odd. But 2q^2 is only even number so p^2 not is necessarily equal to 2q^2 which is contradictory to the equation (*) so our assumption is... read more

Proof: Assume that root 2 = p/q (rational number) squaring on both the sides, 2 =p^2/q^2 p^2= 2q^2 ---(*) p^2 is a perfect square number which can be even or odd. But 2q^2 is only even number so p^2 not is necessarily equal to 2q^2 which is contradictory to the equation (*) so our assumption is incorrect Hence root is an irrational number. read less

1

Comments

A proof that the square root of 2 is irrational Let's suppose 2 is a rational number. Then we can write it 2 = a/b where a, b are whole numbers, b not zero. We additionally assume that this a/b is simplified to lowest terms, since that can obviously be done with any fraction. Notice that in order... read more

A proof that the square root of 2 is irrational Let's suppose 2 is a rational number. Then we can write it 2 = a/b where a, b are whole numbers, b not zero. We additionally assume that this a/b is simplified to lowest terms, since that can obviously be done with any fraction. Notice that in order for a/b to be in simplest terms, both of a and b cannot be even. One or both must be odd. Otherwise, we could simplify a/b further. From the equality 2 = a/b it follows that 2 = a^2/b^2, or a^2 = 2 · b^2. So the square of a is an even number since it is two times something. From this we know that a itself is also an even number. Why? Because it can't be odd; if a itself was odd, then a · a would be odd too. Odd number times odd number is always odd. Check it if you don't believe me! Okay, if a itself is an even number, then a is 2 times some other whole number. In symbols, a = 2k where k is this other number. We don't need to know what k is; it won't matter. Soon comes the contradiction. If we substitute a = 2k into the original equation 2 = a^2/b^2, this is what we get: 2 = (2k)2/b2 2 = 4k^2/b^2 2*b^2 = 4k^2 b2 = 2k2 This means that b^2 is even, from which follows again that b itself is even. And that is a contradiction!!! WHY is that a contradiction? Because we started the whole process assuming that a/b was simplified to lowest terms, and now it turns out that a and b both would be even. We ended at a contradiction; thus our original assumption (that 2 is rational) is not correct. Therefore 2 cannot be rational. read less

1

Comments

It can be proved using contradiction.

1

Comments

Let's suppose ?2 is a rational number. Then we can write it ?2 = a/b where a, b are whole numbers, b not zero. We additionally assume that this a/b is simplified to lowest terms, since that can obviously be done with any fraction. Notice that in order for a/b to be in simplest terms, both of a and... read more

Let's suppose ?2 is a rational number. Then we can write it ?2 = a/b where a, b are whole numbers, b not zero. We additionally assume that this a/b is simplified to lowest terms, since that can obviously be done with any fraction. Notice that in order for a/b to be in simplest terms, both of a and b cannot be even. One or both must be odd. Otherwise, we could simplify a/b further. From the equality ?2 = a/b it follows that 2 = a2/b2, or a2 = 2 · b2. So the square of a is an even number since it is two times something. From this we know that a itself is also an even number. Why? Because it can't be odd; if a itself was odd, then a · a would be odd too. Odd number times odd number is always odd. Check it if you don't believe me! Okay, if a itself is an even number, then a is 2 times some other whole number. In symbols, a = 2k where k is this other number. We don't need to know what k is; it won't matter. Soon comes the contradiction. If we substitute a = 2k into the original equation 2 = a2/b2, this is what we get: 2 = (2k)2/b2 2 = 4k2/b2 2*b2 = 4k2 b2 = 2k2 This means that b2 is even, from which follows again that b itself is even. And that is a contradiction!!! WHY is that a contradiction? Because we started the whole process assuming that a/b was simplified to lowest terms, and now it turns out that a and b both would be even. We ended at a contradiction; thus our original assumption (that ?2 is rational) is not correct. Therefore ?2 cannot be rational. read less

1

Comments

There are several ways to prove that ?2 (The square root of 2) is an irrational number. Here's a list of 10 different ways to prove it - http://en.wikipedia.org/wiki/Square_root_of_2

1

Comments

We prove this by contradiction. Assume it to be a rational number, so it can be expressed in the form of a/b where a & b are co-prime integers(Having 1 as only common factor). root 2 = a/b squaring both sides 2 = square of a/ square of b. 2 is an integer, whereas square of a/ square of b is a... read more

We prove this by contradiction. Assume it to be a rational number, so it can be expressed in the form of a/b where a & b are co-prime integers(Having 1 as only common factor). root 2 = a/b squaring both sides 2 = square of a/ square of b. 2 is an integer, whereas square of a/ square of b is a fraction, as a & b are co-prime integers so is square of a & square of b. Thus we arrive at the wrong conclusion. Hence our assumption is wrong. Thus square root of 2 is an irrational number. read less

0

Comments

Nothing more to add here. the above details should have sufficed hour query. But if you have a doubt that why do we have to prove it by contradiction i have an argument for you. we dont have a direct definition for irrational number. its definition is : a number which is not a rational number. so... read more

Nothing more to add here. the above details should have sufficed hour query. But if you have a doubt that why do we have to prove it by contradiction i have an argument for you. we dont have a direct definition for irrational number. its definition is : a number which is not a rational number. so the motive behind the proof should be to show 2^0.5 not a rational number. rational number : a number which can be expressed a p / q where p,q are non-zero interzers which have gcd = 1 read less

0

Comments

Suppose, to the contrary, that Sqrt were rational. Then Sqrt=m/n for some integers m, n in lowest terms, i.e., m and n have no common factors. Then 2=m2/n2, which implies that m2=2n2. Hence m2 is even, which implies that m is even. Then m=2k for some integer k. So 2=(2k)2/n2, but then 2n2 = 4k2, or... read more

Suppose, to the contrary, that Sqrt[2] were rational. Then Sqrt[2]=m/n for some integers m, n in lowest terms, i.e., m and n have no common factors. Then 2=m2/n2, which implies that m2=2n2. Hence m2 is even, which implies that m is even. Then m=2k for some integer k. So 2=(2k)2/n2, but then 2n2 = 4k2, or n2 = 2k2. So n2 is even. But this means that n must be even, because the square of an odd number cannot be even. We have just showed that both m and n are even, which contradicts the fact that m, n are in lowest terms. Thus our original assumption (that Sqrt[2] is rational) is false, so the Sqrt[2] must be irrational. read less

0

Comments

View 7 more Answers

Now ask question in any of the 1000+ Categories, and get Answers from Tutors and Trainers on UrbanPro.com

Ask a QuestionRecommended Articles

Top Benefits of e-Learning

With the current trend of the world going digital, electronic renaissance is a new movement that is welcomed by the new generation as it helps makes the lives of millions of people easier and convenient. Along with this rapidly changing movement and gaining popularity of Internet, e-Learning is a new tool that emerging...

The Rising Problems in Indian Government School

With the mushrooming of international and private schools, it may seem that the education system of India is healthy. In reality, only 29% of children are sent to the private schools, while the remaining head for government or state funded education. So, to check the reality of Indian education system it is better to look...

The Trend of E-learning and it s Benefits

If the internet has made it s way to all aspects of human life, no far stands classrooms from it. The boons of internet have entered the classrooms in the form of devices and this penetration of technology in the academic system is termed as e-learning. E-learning is a kind of teaching where computers with internet connection...

Science, Arts Or Commerce - Which One To Go For?

Once over with the tenth board exams, a heavy percentage of students remain confused between the three academic streams they have to choose from - science, arts or commerce. Some are confident enough to take a call on this much in advance. But there is no worry if as a student you take time to make choice between - science,...

Find Class 10 Tuition near you

Looking for Class 10 Tuition ?

Find best Class 10 Tuition in your locality on UrbanPro.

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you