Integration Formulas
Indefinite Integration:
- If f and g are functions of x such that g’(x) = f(x) then,
Here, c is called the constant of integration.
- Standard formula:
(c) ∫ex dx = ex+c
(e) ∫ sin x dx = -cos x + c
(f) ∫ cos x dx = sin x + c
(g) ∫ sec2 x dx = tan x + c
(h) ∫ cosec2 x dx = -cot x + c
(h) ∫ sec x tan x dx = sec x + c
(i) ∫ cosec x cot x dx = – cosec x + c
(j) ∫ cot x dx = log|sin x| + c
(k) ∫ tan x dx = -log|cos x| + c
(l) ∫ sec x dx = log |sec x + tan x| + c
(m) ∫ cosec x dx = log |cosec x – cot x| + c
If in place of x we have (ax+b), then the same formula is applicable but we must divide by coefficient of x or derivative of (ax+b), i.e., a.
(iii) ∫ eax+b dx = (1/a) eax+b+c
(v) ∫ sin(ax + b)dx = -(1/a) cos(ax + b) + c
(vi) ∫ cos(ax + b) dx = (1/a) sin(ax + b) + c
(vii) ∫ tan(ax + b)dx = (1/a) ln sec(ax + b) + c
(viii) ∫ cot(ax+b)dx = (1/a) ln sin (ax + b) + c
(ix) ∫ sec2(ax+b)dx = (1/a) tan(ax+b) + c
(x) ∫ cosec2 (ax+b) dx = -(1/a) cot (ax+b) + c
(xi) ∫ sec (ax+b) ⋅ tan (ax+b) dx = (1/a) sec (ax+b) + c
(xii) ∫ cosec (ax+b) ⋅ cot (ax+b) dx = -(1/a) cosec (ax+b) + c
(xiii) ∫ sec x dx = ln (sec x + tan x) + c or
(xiv) ∫ cosec x dx = ln (cosec x – cot x) + c or ln tan (x/2) +c or –ln (cosec x + cot x)+ c