š Basic Trigonometric Ratios
sinā”Īø=OppositeHypotenuse,cosā”Īø=AdjacentHypotenuse,tanā”Īø=sinā”Īøcosā”Īø\sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}}, \quad \cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}}, \quad \tan \theta = \frac{\sin \theta}{\cos \theta}sinĪø=HypotenuseOpposite,cosĪø=HypotenuseAdjacent,tanĪø=cosĪøsinĪø cscā”Īø=1sinā”Īø,secā”Īø=1cosā”Īø,cotā”Īø=1tanā”Īø\csc \theta = \frac{1}{\sin \theta}, \quad \sec \theta = \frac{1}{\cos \theta}, \quad \cot \theta = \frac{1}{\tan \theta}cscĪø=sinĪø1,secĪø=cosĪø1,cotĪø=tanĪø1
š Pythagorean Identities
sinā”2Īø+cosā”2Īø=1\sin^2 \theta + \cos^2 \theta = 1sin2Īø+cos2Īø=1 1+tanā”2Īø=secā”2Īø1 + \tan^2 \theta = \sec^2 \theta1+tan2Īø=sec2Īø 1+cotā”2Īø=cscā”2Īø1 + \cot^2 \theta = \csc^2 \theta1+cot2Īø=csc2Īø
š Angle Transformation
sinā”(āĪø)=āsinā”Īø,cosā”(āĪø)=cosā”Īø\sin(-\theta) = -\sin \theta, \quad \cos(-\theta) = \cos \thetasin(āĪø)=āsinĪø,cos(āĪø)=cosĪø tanā”(āĪø)=ātanā”Īø\tan(-\theta) = -\tan \thetatan(āĪø)=ātanĪø
š Standard Angles
θ | 0° | 30° | 45° | 60° | 90° |
---|---|---|---|---|---|
sin Īø | 0 | 1/2 | ā2/2 | ā3/2 | 1 |
cos Īø | 1 | ā3/2 | ā2/2 | 1/2 | 0 |
tan Īø | 0 | 1/ā3 | 1 | ā3 | ā |
š Sum and Difference Formulas
sinā”(A±B)=sinā”Acosā”B±cosā”Asinā”B\sin(A \pm B) = \sin A \cos B \pm \cos A \sin Bsin(A±B)=sinAcosB±cosAsinB cosā”(A±B)=cosā”Acosā”Bāsinā”Asinā”B\cos(A \pm B) = \cos A \cos B \mp \sin A \sin Bcos(A±B)=cosAcosBāsinAsinB tanā”(A±B)=tanā”A±tanā”B1ātanā”Atanā”B\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}tan(A±B)=1ātanAtanBtanA±tanB
š Double Angle Formulas
sinā”2A=2sinā”Acosā”A\sin 2A = 2 \sin A \cos Asin2A=2sinAcosA cosā”2A=cosā”2Aāsinā”2A=2cosā”2Aā1=1ā2sinā”2A\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 Acos2A=cos2Aāsin2A=2cos2Aā1=1ā2sin2A tanā”2A=2tanā”A1ātanā”2A\tan 2A = \frac{2\tan A}{1 - \tan^2 A}tan2A=1ātan2A2tanA
š Product to Sum Formulas
sinā”Asinā”B=12[cosā”(AāB)ācosā”(A+B)]\sin A \sin B = \frac{1}{2}[\cos(A - B) - \cos(A + B)]sinAsinB=21[cos(AāB)ācos(A+B)] cosā”Acosā”B=12[cosā”(AāB)+cosā”(A+B)]\cos A \cos B = \frac{1}{2}[\cos(A - B) + \cos(A + B)]cosAcosB=21[cos(AāB)+cos(A+B)] sinā”Acosā”B=12[sinā”(A+B)+sinā”(AāB)]\sin A \cos B = \frac{1}{2}[\sin(A + B) + \sin(A - B)]sinAcosB=21[sin(A+B)+sin(AāB)]