Projectile on an Inclined Plane (Class 11)
In normal projectile motion, the object lands on horizontal ground.
But here:
-
The projectile is thrown
-
It lands on a sloping surface (inclined plane)
Let the plane make an angle β with the horizontal.
š Setup of the Problem
-
Inclined plane angle = β
-
Projectile is thrown with speed = u
-
Angle of projection (from horizontal) = θ
-
Acceleration due to gravity = g
āļø Step 1: Resolve Initial Velocity
Horizontal component:
ux=ucosā”θu_x = u \cos\thetaux=ucosθ
Vertical component:
uy=usinā”θu_y = u \sin\thetauy=usinθ
āļø Step 2: Motion Equations
Horizontal motion:
x=ucosā”θ⋅tx = u\cos\theta \cdot tx=ucosθ⋅t
Vertical motion:
y=usinā”θ⋅t−12gt2y = u\sin\theta \cdot t - \frac{1}{2}gt^2y=usinθ⋅t−21gt2
š Condition to Hit the Inclined Plane
Equation of inclined plane:
y=xtanā”βy = x \tan\betay=xtanβ
At the point of landing:
usinā”θ⋅t−12gt2=(ucosā”θ⋅t)tanā”βu\sin\theta \cdot t - \frac{1}{2}gt^2 = (u\cos\theta \cdot t)\tan\betausinθ⋅t−21gt2=(ucosθ⋅t)tanβ
Solve for time ttt.
š Time of Flight on Inclined Plane
T=2usinā”(θ−β)gcosā”βT = \frac{2u \sin(\theta - \beta)}{g\cos\beta}T=gcosβ2usin(θ−β)
(Important formula for exams)
š Range Along the Inclined Plane
Range measured along the plane is:
R=2u2cosā”θsinā”(θ−β)gcosā”2βR = \frac{2u^2 \cos\theta \sin(\theta - \beta)}{g\cos^2\beta}R=gcos2β2u2cosθsin(θ−β)
šÆ Condition for Maximum Range
Maximum range on inclined plane occurs when:
θ=45ā+β2\theta = 45^\circ + \frac{\beta}{2}θ=45ā+2β
Very important result for Class 11 exams.
š§ Key Idea to Remember
In inclined plane problems:
-
Resolve motion normally (horizontal & vertical)
-
Apply condition of plane y=xtanā”βy = x\tan\betay=xtanβ
-
Solve carefully
This concept is an extension of the projectile motion studied by
Galileo Galilei.
š„ Quick Summary
| Quantity | Formula |
|---|---|
| Time of flight | 2usinā”(θ−β)gcosā”β\frac{2u \sin(\theta - \beta)}{g\cos\beta}gcosβ2usin(θ−β) |
| Range on plane | 2u2cosā”θsinā”(θ−β)gcosā”2β\frac{2u^2 \cos\theta \sin(\theta - \beta)}{g\cos^2\beta}gcos2β2u2cosθsin(θ−β) |
| Max range condition | θ=45ā+β/2\theta = 45^\circ + \beta/2θ=45ā+β/2 |
0