UrbanPro
true

Take Class 11 Tuition from the Best Tutors

  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

Learn Equilibrium with Free Lessons & Tips

Search in

Answered on 10 Apr Learn Equilibrium

Sadika

To predict the effect of temperature on the equilibrium constant (KK) of the given reaction, we can use the relationship between the standard Gibbs free energy change (ΔG∘ΔG∘) and the equilibrium constant: ΔG∘=−RTln⁡KΔG∘=−RTlnK where: ΔG∘ΔG∘ is the... read more

To predict the effect of temperature on the equilibrium constant (KK) of the given reaction, we can use the relationship between the standard Gibbs free energy change (ΔG∘ΔG) and the equilibrium constant:

ΔG∘=−RTln⁡KΔG=−RTlnK

where:

  • ΔG∘ΔG is the standard Gibbs free energy change,
  • RR is the gas constant (8.314 J/mol·K),
  • TT is the temperature in Kelvin,
  • KK is the equilibrium constant.

At equilibrium, ΔG∘ΔG is zero. Therefore, we can rearrange the equation to solve for KK:

K=e−ΔG∘RTK=eRTΔG

Given that the reaction is:

CaCO3(s)→CaO(s)+CO2(g)CaCO3(s)→CaO(s)+CO2(g)

with the given standard enthalpy changes (ΔH∘ΔH):

ΔHCaCO3∘=−1206.9 kJ/molΔHCaCO3=−1206.9kJ/mol ΔHCaO∘=−635.1 kJ/molΔHCaO=−635.1kJ/mol ΔHCO2∘=−393.5 kJ/molΔHCO2=−393.5kJ/mol

we can use these values to calculate the change in standard Gibbs free energy (ΔG∘ΔG) using the equation:

ΔG∘=ΔHproducts∘−ΔHreactants∘ΔGHproducts−ΔHreactants

ΔG∘=(−635.1+(−393.5))−(−1206.9) kJ/molΔG=(−635.1+(−393.5))−(−1206.9)kJ/mol ΔG∘=118.3 kJ/molΔG=118.3kJ/mol

Now, we can calculate KK at two different temperatures and compare their values:

  1. At T1=298 KT1=298K: K1=e−118.3×1038.314×298K1=e8.314×298118.3×103

  2. At T2=350 KT2=350K: K2=e−118.3×1038.314×350K2=e8.314×350118.3×103

To determine the effect of temperature on KK, we can compare the values of K1K1 and K2K2. If K2>K1K2>K1, then increasing the temperature increases the equilibrium constant KK, indicating that the reaction shifts towards the products at higher temperatures. Conversely, if K2<K1K2<K1, then increasing the temperature decreases the equilibrium constant KK, indicating that the reaction shifts towards the reactants at higher temperatures.

By calculating K1K1 and K2K2 using the above equations, we can determine the effect of temperature on the equilibrium constant KK of the given reaction.

 
 
 
 
read less
Answers 1 Comments
Dislike Bookmark

Answered on 10 Apr Learn Equilibrium

Sadika

In the given reaction: NH3+BF3→H3N:BF3NH3+BF3→H3N:BF3 Ammonia (NH3NH3) acts as the base, while boron trifluoride (BF3BF3) acts as the acid. This reaction involves the formation of a coordinate covalent bond between the lone pair of electrons on the nitrogen atom in ammonia and the empty... read more

In the given reaction:

NH3+BF3→H3N:BF3NH3+BF3→H3N:BF3

Ammonia (NH3NH3) acts as the base, while boron trifluoride (BF3BF3) acts as the acid. This reaction involves the formation of a coordinate covalent bond between the lone pair of electrons on the nitrogen atom in ammonia and the empty orbital on the boron atom in boron trifluoride.

This reaction is best explained by Lewis acid-base theory. According to this theory, an acid is defined as a substance that can accept an electron pair, while a base is a substance that can donate an electron pair. In the given reaction, boron trifluoride acts as the Lewis acid by accepting the lone pair of electrons from ammonia, which acts as the Lewis base.

The hybridization of boron (BB) and nitrogen (NN) in the reactants can be determined by considering the electron configuration and bonding in the molecules:

  1. In boron trifluoride (BF3BF3), boron has an electron configuration of 1s22s22p11s22s22p1. Boron forms three bonds with fluorine atoms, resulting in sp^2 hybridization for boron. The three hybridized orbitals on boron overlap with the p orbitals of the three fluorine atoms to form three sigma bonds.

  2. In ammonia (NH3NH3), nitrogen has an electron configuration of 1s22s22p31s22s22p3. Nitrogen forms three bonds with hydrogen atoms, resulting in sp^3 hybridization for nitrogen. The three hybridized orbitals on nitrogen overlap with the s orbitals of the three hydrogen atoms to form three sigma bonds.

Therefore, in the reactants, the hybridization of boron is sp^2 and the hybridization of nitrogen is sp^3.

 
 
 
read less
Answers 1 Comments
Dislike Bookmark

Answered on 10 Apr Learn Equilibrium

Sadika

To calculate the volume of water required to dissolve 0.1 g0.1g of lead (II) chloride (PbCl2PbCl2) to get a saturated solution, we first need to determine the number of moles of PbCl2PbCl2 dissolved. Then, we can use the solubility product constant (KspKsp) to find the concentration of Pb2+Pb2+... read more

To calculate the volume of water required to dissolve 0.1 g0.1g of lead (II) chloride (PbCl2PbCl2) to get a saturated solution, we first need to determine the number of moles of PbCl2PbCl2 dissolved. Then, we can use the solubility product constant (KspKsp) to find the concentration of Pb2+Pb2+ ions in the saturated solution, which will allow us to calculate the volume of water required.

First, let's calculate the number of moles of PbCl2PbCl2 dissolved:

  1. Calculate the molar mass of PbCl2PbCl2: Molar mass of Pb=207 g/molMolar mass of Pb=207g/mol Molar mass of Cl=35.453 g/molMolar mass of Cl=35.453g/mol Molar mass of ( \text{PbCl}_2 = \text{Molar mass of Pb} + 2 \times \text{Molar mass of Cl} ] =207+2×35.453=207+70.906=277.906 g/mol=207+2×35.453=207+70.906=277.906g/mol

  2. Calculate the number of moles of PbCl2PbCl2: Number of moles=MassMolar mass=0.1 g277.906 g/molNumber of moles=Molar massMass=277.906g/mol0.1g Number of moles≈3.598×10−4 molNumber of moles≈3.598×10−4mol

Now, let's use the solubility product constant (KspKsp) to find the concentration of Pb2+Pb2+ ions in the saturated solution:

PbCl2→Pb2++2Cl−PbCl2→Pb2++2Cl

Given Ksp=3.2×10−8Ksp=3.2×10−8, we can set up an ice table:

PbCl2→Pb2++2Cl−InitialChange+x+2xEquilibrium3.598×10−42×3.598×10−4PbCl2InitialChangeEquilibrium→Pb2+++x3.598×10−42Cl+2x2×3.598×10−4

Substituting the equilibrium concentrations into the KspKsp expression:

Ksp=[Pb2+]×[Cl−]2Ksp=[Pb2+]×[Cl]2

3.2×10−8=(3.598×10−4)×(2×3.598×10−4)23.2×10−8=(3.598×10−4)×(2×3.598×10−4)2

Solve for [Pb2+][Pb2+]:

[Pb2+]=3.2×10−8(2×3.598×10−4)2[Pb2+]=(2×3.598×10−4)23.2×10−8

[Pb2+]≈2.222×10−2 M[Pb2+]≈2.222×10−2M

Now, we can use the concentration to calculate the volume of water required to dissolve 0.1 g0.1g of PbCl2PbCl2:

[Pb2+]=Amount of substanceVolume of solution[Pb2+]=Volume of solutionAmount of substance

Volume of solution=Amount of substance[Pb2+]Volume of solution=[Pb2+]Amount of substance

Volume of solution=3.598×10−4 mol2.222×10−2 MVolume of solution=2.222×10−2M3.598×10−4mol

Volume of solution≈0.0162 LVolume of solution≈0.0162L

Therefore, approximately 0.0162 L0.0162L of water is required to dissolve 0.1 g0.1g of lead (II) chloride to get a saturated solution.

 
 
 
 
read less
Answers 1 Comments
Dislike Bookmark

Overview

Questions 129

Total Shares  

+ Follow 60 Followers

Answered on 10 Apr Learn Equilibrium

Sadika

To find the solubility of Al(OH)3Al(OH)3 in grams per liter (g/L), we first need to determine the concentration of Al3+Al3+ ions in the saturated solution. Then, we can use stoichiometry to find the concentration of Al(OH)3Al(OH)3 and finally convert it to grams per liter. Given: Solubility product... read more

To find the solubility of Al(OH)3Al(OH)3 in grams per liter (g/L), we first need to determine the concentration of Al3+Al3+ ions in the saturated solution. Then, we can use stoichiometry to find the concentration of Al(OH)3Al(OH)3 and finally convert it to grams per liter.

Given:

  • Solubility product (KspKsp) of Al(OH)3Al(OH)3 = 2.7×10−112.7×10−11
  • Atomic mass of Al (AlAl) = 27 u
  1. Calculate the concentration of Al3+Al3+ ions:

The dissolution of Al(OH)3Al(OH)3 proceeds as follows:

Al(OH)3⇌Al3++3OH−Al(OH)3⇌Al3++3OH

Let xx be the solubility of Al(OH)3Al(OH)3 in moles per liter (M). Then, the concentration of Al3+Al3+ ions will also be xx M.

Using the solubility product expression:

Ksp=[Al3+]×[OH−]3Ksp=[Al3+]×[OH]3

Given that [OH−]=3x[OH]=3x, we can substitute these values into the expression:

2.7×10−11=x×(3x)32.7×10−11=x×(3x)3

Solving for xx:

2.7×10−11=27x42.7×10−11=27x4

x4=2.7×10−1127x4=272.7×10−11

x4=1×10−12x4=1×10−12

x=1×10−124x=41×10−12

x=0.01 Mx=0.01M

  1. Calculate the molar mass of Al(OH)3Al(OH)3:

Molar mass of Al(OH)3=Molar mass of Al+3×Molar mass of O+3×Molar mass of HMolar mass of Al(OH)3=Molar mass of Al+3×Molar mass of O+3×Molar mass of H

=27+3×16+3×1=27+3×16+3×1

=27+48+3=27+48+3

=78 g/mol=78g/mol

  1. Calculate the solubility in grams per liter (g/L):

The solubility of Al(OH)3Al(OH)3 in grams per liter (g/L) is the molar mass of Al(OH)3Al(OH)3 multiplied by its molar solubility:

Solubility=Molar solubility×Molar massSolubility=Molar solubility×Molar mass

Solubility=0.01 M×78 g/molSolubility=0.01M×78g/mol

Solubility=0.78 g/LSolubility=0.78g/L

  1. Calculate the pH of the solution:

Since Al(OH)3Al(OH)3 is a sparingly soluble salt, we can assume that it dissociates completely in solution. Therefore, the concentration of Al3+Al3+ ions is equal to the solubility, which is 0.01 M0.01M.

To find the pH of the solution, we need to calculate the concentration of H+H+ ions. Since Al3+Al3+ ions are neutral, for each mole of Al3+Al3+ ions, three moles of H+H+ ions are produced.

[H+]=3×0.01 M=0.03 M[H+]=3×0.01M=0.03M

Now, we can use the formula for pH:

pH=−log⁡[H+]pH=−log[H+]

pH=−log⁡(0.03)pH=−log(0.03)

pH≈−log⁡(3×10−2)pH≈−log(3×10−2)

pH≈−(−1.5229)pH≈−(−1.5229)

pH≈1.5229pH≈1.5229

Therefore, the solubility of Al(OH)3Al(OH)3 in g/L is 0.78 g/L0.78g/L, and the pH of the solution is approximately 1.521.52.

 
 
 
read less
Answers 1 Comments
Dislike Bookmark

Answered on 10 Apr Learn Equilibrium

Sadika

Calculate the pH of a solution formed by mixing equal volumes of two solutions A and B of a strong acid having pH = 6 and pH = 4 respectively. When equal volumes of two solutions are mixed, the resulting pH can be calculated using the formula for dilution: pH=12(pHA+pHB)pH=21(pHA+pHB) pH=12(6+4)=12(10)=5pH=21(6+4)=21(10)=5 ... read more

 

  • Calculate the pH of a solution formed by mixing equal volumes of two solutions A and B of a strong acid having pH = 6 and pH = 4 respectively.

    When equal volumes of two solutions are mixed, the resulting pH can be calculated using the formula for dilution: pH=12(pHA+pHB)pH=21(pHA+pHB) pH=12(6+4)=12(10)=5pH=21(6+4)=21(10)=5

 

read less
Answers 1 Comments
Dislike Bookmark

Answered on 10 Apr Learn Equilibrium

Sadika

pH of 0.08 mol dm–3HOCl solution is 2.85. Calculate its ionization constant. The ionization constant (KaKa) for a weak acid (HAHA) can be calculated using the pH and initial concentration (00) of the acid solution: Ka==10−pHKa==10−pH Ka=10−2.85Ka=10−2.85 Ka=1.318×10−3 mol−1Ka=1.318×10−3mol−1 ... read more

 

  • pH of 0.08 mol dm–3HOCl solution is 2.85. Calculate its ionization constant.

    The ionization constant (KaKa) for a weak acid (HAHA) can be calculated using the pH and initial concentration ([HA]0[HA]0) of the acid solution: Ka=[H+][OCl−][HOCl]=10−pHKa=[HOCl][H+][OCl]=10−pH Ka=10−2.85Ka=10−2.85 Ka=1.318×10−3 mol−1Ka=1.318×10−3mol−1

 

read less
Answers 1 Comments
Dislike Bookmark

Answered on 10 Apr Learn Equilibrium

Sadika

A sparingly soluble salt gets precipitated only when the product of concentration of its ions in the solution (Qsp) becomes greater than its solubility product. If the solubility of BaSO4BaSO4 in water is 8×10−4 mol dm−38×10−4mol dm−3, calculate its solubility... read more

 

  • A sparingly soluble salt gets precipitated only when the product of concentration of its ions in the solution (Qsp) becomes greater than its solubility product. If the solubility of BaSO4BaSO4 in water is 8×10−4 mol dm−38×10−4mol dm−3, calculate its solubility in 0.01 mol dm−30.01mol dm−3 of H2SO4H2SO4.

    Solubility product (KspKsp) is a constant at a given temperature. If Qsp>KspQsp>Ksp, precipitation occurs. Qsp=[Ba2+][SO42−]=(8×10−4)(8×10−4)=6.4×10−7 mol2dm−6Qsp=[Ba2+][SO42−]=(8×10−4)(8×10−4)=6.4×10−7mol2dm−6 Since Qsp<KspQsp<Ksp, BaSO4BaSO4 will not precipitate in 0.01 mol dm−30.01mol dm−3 H2SO4H2SO4.

 

read less
Answers 1 Comments
Dislike Bookmark

Answered on 10 Apr Learn Equilibrium

Sadika

pH of a solution of a strong acid is 5.0. What will be the pH of the solution obtained after diluting the given solution a 100 times? Diluting the solution a 100 times means its concentration decreases by a factor of 100. Since it's a strong acid, pH only depends on concentration. Therefore, if the... read more

 

  • pH of a solution of a strong acid is 5.0. What will be the pH of the solution obtained after diluting the given solution a 100 times?

    Diluting the solution a 100 times means its concentration decreases by a factor of 100. Since it's a strong acid, pH only depends on concentration. Therefore, if the concentration decreases by 100 times, pH increases by 2 units. So, the pH of the diluted solution will be 5+2=75+2=7.

 

read less
Answers 1 Comments
Dislike Bookmark

Answered on 10 Apr Learn Equilibrium

Sadika

On the basis of the equation pH = -log , the pH of 10−8 mol dm−310−8mol dm−3 solution of HClHCl should be 8. However, it is observed to be less than 7.0. Explain the reason. The pH of a 10−8 mol dm−310−8mol dm−3 solution of HClHCl would... read more

 

  • On the basis of the equation pH = -log [H+], the pH of 10−8 mol dm−310−8mol dm−3 solution of HClHCl should be 8. However, it is observed to be less than 7.0. Explain the reason.

    The pH of a 10−8 mol dm−310−8mol dm−3 solution of HClHCl would indeed be 8 if it were a neutral solution. However, HClHCl is a strong acid and dissociates completely in water to produce H+H+ ions. Thus, the solution is acidic, and the pH would be less than 7.

 

read less
Answers 1 Comments
Dislike Bookmark

Top Contributors

Connect with Expert Tutors & Institutes for Equilibrium

Answered on 10 Apr Learn Equilibrium

Sadika

The value of KcKc for the reaction 2HI(g)⇌H2(g)+I2(g)2HI(g)⇌H2(g)+I2(g) is 1×10−41×10−4. At a given time, the composition of the reaction mixture is =2×10−5 mol=2×10−5mol, =1×10−5 mol=1×10−5mol, and =1×10−5 mol=1×10−5mol.... read more

 

  • The value of KcKc for the reaction 2HI(g)⇌H2(g)+I2(g)2HI(g)⇌H2(g)+I2(g) is 1×10−41×10−4. At a given time, the composition of the reaction mixture is [HI]=2×10−5 mol[HI]=2×10−5mol, [H2]=1×10−5 mol[H2]=1×10−5mol, and [I2]=1×10−5 mol[I2]=1×10−5mol. In which direction will the reaction proceed?

    The reaction quotient (QQ) is calculated as [H2][I2][HI]2[HI]2[H2][I2]. If Q<KcQ<Kc, the reaction will proceed in the forward direction to reach equilibrium. If Q>KcQ>Kc, the reaction will proceed in the reverse direction to reach equilibrium. Here, Q=(1×10−5)2(2×10−5)2=14Q=(2×10−5)2(1×10−5)2=41. Since Q<KcQ<Kc, the reaction will proceed in the forward direction.

 

read less
Answers 1 Comments
Dislike Bookmark

About UrbanPro

UrbanPro.com helps you to connect with the best Class 11 Tuition in India. Post Your Requirement today and get connected.

x

Ask a Question

Please enter your Question

Please select a Tag

X

Looking for Class 11 Tuition Classes?

The best tutors for Class 11 Tuition Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Take Class 11 Tuition with the Best Tutors

The best Tutors for Class 11 Tuition Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more