UrbanPro

Take Class 12 Tuition from the Best Tutors

  • Affordable fees
  • 1-1 or Group class
  • Flexible Timings
  • Verified Tutors

Search in

Find the sum of integers from 1 to 100 that are divisible by 3 or 5 ?

Asked by Last Modified  

21 Answers

Follow 1
Answer

Please enter your answer

Tutor

There are total 33 numbers divisible by 3 within 1st 100 natural numbers. There are total 20 numbers divisible by 5 within 1st 100 natural numbers. There are total 6 numbers divisible by 15 within 1st 100 natural numbers. As multiples of 15 occur in both, we need to subtract it from addition...
read more
There are total 33 numbers divisible by 3 within 1st 100 natural numbers. There are total 20 numbers divisible by 5 within 1st 100 natural numbers. There are total 6 numbers divisible by 15 within 1st 100 natural numbers. As multiples of 15 occur in both, we need to subtract it from addition to cancel the repetition. sum of 'n' consecutive natural numbers starting from 1= n*(n+1)/2 Sum of numbers divisible by 3 = 3 * (1+2+3...33) = 3*33*34/2 = 99*17 use the trick = (100 - 1)*17 = 1700 - 17 = 1683 Similarly, Sum of numbers divisible by 5 = 5 * (1+2+3...20) = 5*20*21/2 = 50*21 = 1050 Sum of numbers divisible by 15 = 15 * (1+2+3...6) = 15*6*7/2 = 45 *7 = 315 Total sum = 1683+1050-315 = 2418 read less
Comments

Mathematics for JEE Mains/Advanced, XI & XII (All Boards)

=sum of integers divisible by 3 + Sum of integers divisible by 5 - Sum if integers divisible by 15. Each of these are simple AP Sums, so can be found easily.
Comments

GMAT Math Expert

From 1 to 100, there are 33 multiples of 3 and 20 multiples of 5. Multiples of 3 are in A.P. and sum of the sequence is given by (n/2)(first term + last term), where n= no. of terms. For multiples of 3, n=33, first term= 3 and last term= 99. Similarly we calculate for multiples of 5, where n=20, 1st...
read more
From 1 to 100, there are 33 multiples of 3 and 20 multiples of 5. Multiples of 3 are in A.P. and sum of the sequence is given by (n/2)(first term + last term), where n= no. of terms. For multiples of 3, n=33, first term= 3 and last term= 99. Similarly we calculate for multiples of 5, where n=20, 1st term= 5 and last term= 100. However there are certain number that are multiples of both 3 & 5, so we need to subtract them and those are multiples of 15. For multiples of 15, n=6, 1st term= 15, last term=90. So using the formula mentioned above for A.P., we can solve. Required Sum = (Sum of multiples of 3) + (Sum of multiples of 5) - (Sum of multiples of 15) read less
Comments

Tutor

The integers from 1 to 100 which are divisible by 3=3,6,9.....99 this will form a AP with common difference 3 find the value of n using formula t(n)=a+(n-1)d u will get n=33 now find the sum of these integers for n=33 using sum formula in AP i.e S(n)=n/2 you will get S(n)=1683-------(1) Do the...
read more
The integers from 1 to 100 which are divisible by 3=3,6,9.....99 this will form a AP with common difference 3 find the value of n using formula t(n)=a+(n-1)d u will get n=33 now find the sum of these integers for n=33 using sum formula in AP i.e S(n)=n/2[2a+(n-1)d] you will get S(n)=1683-------(1) Do the above process for 5... The integers from 1 to 100 which are divisible by 5=5,10,15........100 this will form a AP with common difference 5 find the value of n using formula t(n)=a+(n-1)d u will get n=20 now find the sum of these integers for n=20 using sum formula in AP i.e S(n)=n/2[2a+(n-1)d] you will get S(n)=1050-----------------(2) Now find the integers which r divisible by both 3 and 5.. To find the integers take L.C.M of both number(3,5) i.e 15 So first No=15 Common Ratio=15 Last No=90 So N=6 Sum=315-------------------(3) Now the required Sum=1683+1050-315 =2418 read less
Comments

Online Tutor-Mathematics, Science, Competitive Exam Preparation

- Answer = 2418
Comments

Coaching

3050
Comments

Get Trained, Get Noticed n Let's WIN Together

Ans is 2418
Comments

Trainer

Solution: Integers in between 1 and 100 which are divisible by 3 or 5. Integers divisible by 3 = 3, 6,9,12,15,.........., 99 Integers which are divisible by 5= 5,10,15,20,25,..........95 Integers divisible by 5 and 5 = 15, 30,45,60,75,90 Integers divisible by 3 or 5 = Integers divisible by + integers...
read more
Solution: Integers in between 1 and 100 which are divisible by 3 or 5. Integers divisible by 3 = 3, 6,9,12,15,.........., 99 Integers which are divisible by 5= 5,10,15,20,25,..........95 Integers divisible by 5 and 5 = 15, 30,45,60,75,90 Integers divisible by 3 or 5 = Integers divisible by + integers divisible by 5 - Integers divisible by 3 and 5 Use the above concept, find out the numbers then add them. read less
Comments

Spoken English, BTech Tuition, C Language, C++ Language, CAD etc., with 4 years of experience

It is the overall SUM of the sum of multiples of 3 and 5 upto 100.
Comments

conceptual

Divisible by 3 form an a.p.to find sum of terms we have n/2*.repeat this for numbers divisible by 5 then u can get answer.
Comments

View 19 more Answers

Related Questions

what is meant by relativity motion
It must be a relative motion than relativity motion. When two bodies are moving with some velocity then study of motion of one body with respect to the other body is known as relative motion. :-)
Venkata
How to learn the complete Periodic table ??
Rememberable sentences or codes to learn the periodic table. s-block elements 1st group— H Li Na K Rb Cs Fr Code-- HaLiNa Ke Rob Se Farar 2nd group-- Be Mg Ca Sr Ba RaCode—Beta Maange Car Santro...
Naveen K.
If you are looking for tuition which kind of teaching will you prefer, online or offline? Why?
Online, if there is coordination between student and teacher...
Kajal

Now ask question in any of the 1000+ Categories, and get Answers from Tutors and Trainers on UrbanPro.com

Ask a Question

Related Lessons

Rational Numbers
A number of the form p/q where q not equals to zero is called a rational numbers. P may be zero or may not. P and q are positive /negative integers. It denotes the part of a quantity...
M

Mohit S.

1 0
0

What Are The Depository Institutions?
The Depository Institutions comprises of all the commercial banks (or simply banks), savings and loan associations, saving banks and credit Unions. Thus all the financial intermediaries that accept deposits...

Vectors
What is Vector? Scalar quantities are quantities that have only magnitudes such as time, area and distance. Vector quantities are quantities that have both magnitudes and directions such velocity...

ELECTROCHEMISTRY
(a) The process of chemical decomposition of an electrolyte on the passing of electric current through its aqueous solution or in its molten state is known as electrolysis.(b) It involves oxidation...

Easiest way to find Squares of adjacent numbers
Here is the easiest way to find squares of adjacent numbers 12 * 12 = 14413 * 13 = 144 + 12 + 1314 * 14 = 144 + 12 + 13 + 13 + 14............................59 * 59 = (60 * 60) - 60 - 59 = 3600 - 60 -...

Recommended Articles

Looking for Class 12 Tuition ?

Learn from the Best Tutors on UrbanPro

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you
X

Looking for Class 12 Tuition Classes?

The best tutors for Class 12 Tuition Classes are on UrbanPro

  • Select the best Tutor
  • Book & Attend a Free Demo
  • Pay and start Learning

Take Class 12 Tuition with the Best Tutors

The best Tutors for Class 12 Tuition Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more