true

Take Class 10 Tuition from the Best Tutors

• Affordable fees
• 1-1 or Group class
• Flexible Timings
• Verified Tutors

Search in

# How To Solve Exponents?

15/06/2017 0 0

## 1. Simplifying fractional exponents:

The base b raised to the power of n/m is equal to:

bn/m = (mb)n = m(bn)

Example:

The base 2 raised to the power of 3/2 is equal to 1 divided by the base 2 raised to the power of 3:

23/2 = 2(23) = 2.828

## 2. Simplifying fractions with exponents:

Fractions with exponents:

(a / b)n = an / bn

Example:

(4/3)3 = 43 / 33 = 64 / 27 = 2.37

## 3. Negative fractional exponents:

The base b raised to the power of minus n/m is equal to 1 divided by the base b raised to the power of n/m:

b-n/m = 1 / bn/m = 1 / (mb)n

Example:

The base 2 raised to the power of minus 1/2 is equal to 1 divided by the base 2 raised to the power of 1/2:

2-1/2 = 1/21/2 = 1/2 = 0.7071

## 4. Fractions with negative exponents:

The base a/b raised to the power of minus n is equal to 1 divided by the base a/b raised to the power of n:

(a/b)-n = 1 / (a/b)n = 1 / (an/bn) = bn/an

Example:

The base 2 raised to the power of minus 3 is equal to 1 divided by the base 2 raised to the power of 3:

(2/3)-2 = 1 / (2/3)2 = 1 / (22/32) = 32/22 = 9/4 = 2.25

## 5. Multiplying fractional exponents:

Multiplying fractional exponents with same fractional exponent:

a n/mb n/m = (a b) n/m

Example:

23/2 ⋅ 33/2 = (2⋅3)3/2 = 63/2 =(63) = 216 = 14.7

Multiplying fractional exponents with same base:

a n/ma k/j = a (n/m)+(k/j)

Example:

23/2 ⋅ 24/3 = 2(3/2)+(4/3) = 7.127

Multiplying fractional exponents with different exponents and fractions:

a n/mb k/j

Example:

23/2 ⋅ 34/3 = (23) ⋅ 3(34) =2.828 ⋅ 4.327 = 12.237

## 6. Multiplying fractions with exponents:

Multiplying fractions with exponents with same fraction base:

(a / b) n ⋅ (a / b) m = (a / b)n+m

Example:

(4/3)3 ⋅ (4/3)2 = (4/3)3+2 = (4/3)5 = 45 / 35 = 4.214

Multiplying fractions with exponents with same exponent:

(a / b) n ⋅ (c / d) n = ((a / b)⋅(c / d)) n

Example:

(4/3)3 ⋅ (3/5)3 = ((4/3)⋅(3/5))3= (4/5)3 = 0.83 = 0.8⋅0.8⋅0.8 = 0.512

Multiplying fractions with exponents with different bases and exponents:

(a / b) n ⋅ (c / d) m

Example:

(4/3)3 ⋅ (1/2)2 = 2.37 / 0.25 = 9.481

## 7. Dividing fractional exponents:

Dividing fractional exponents with same fractional exponent:

a n/m / b n/m = (a / b) n/m

Example:

33/2 / 23/2 = (3/2)3/2 = 1.53/2 =√(1.53) = 3.375 = 1.837

Dividing fractional exponents with same base:

a n/m / a k/j = a (n/m)-(k/j)

Example:

23/2 / 24/3 = 2(3/2)-(4/3) = 2(1/6) =62 = 1.122

Dividing fractional exponents with different exponents and fractions:

a n/m / b k/j

Example:

23/2 / 34/3 = (23) / 3(34) =2.828 / 4.327 = 0.654

## 8. Dividing fractions with exponents:

Dividing fractions with exponents with same fraction base:

(a / b)n / (a / b)m = (a / b)n-m

Example:

(4/3)3 / (4/3)2 = (4/3)3-2 = (4/3)1 = 4/3 = 1.333

Dividing fractions with exponents with same exponent:

(a / b)n / (c / d)n = ((a / b)/(c / d))n = ((a⋅d / b⋅c))n

Example:

(4/3)3 / (3/5)3 = ((4/3)/(3/5))3= ((4⋅5)/(3⋅3))3 = (20/9)3 = 10.97

Dividing fractions with exponents with different bases and exponents:

(a / b) n / (c / d) m

Example:

(4/3)3 / (1/2)2 = 2.37 / 0.25 = 9.481

## 9. Adding fractional exponents:

Adding fractional exponents is done by raising each exponent first and then adding:

an/m + bk/j

Example:

33/2 + 25/2 = √(33) + √(25) = √(27) + √(32) = 5.196 + 5.657 = 10.853

Adding same bases b and exponents n/m:

bn/m + bn/m = 2bn/m

Example:

42/3 + 42/3 = 2⋅42/3 = 2 ⋅3√(42) = 5.04

## 10. Subtracting fractional exponents:

Subtracting fractional exponents is done by raising each exponent first and then subtracting:

an/m - bk/j

Example:

33/2 - 25/2 = √(33) - √(25) = √(27) - √(32) = 5.196 - 5.657 = -0.488

Subtracting same bases b and exponents n/m:

3bn/m - bn/m = 2bn/m

Example:

3⋅42/3 - 42/3 = 2⋅42/3 = 2 ⋅3√(42) = 5.04

0 Dislike

Please Enter a comment

## Other Lessons for You

Squaring a 2-digit number ending in 1
Take a 2-digit number ending in 1. Subtract 1 from the number. Square the difference. Add the difference twice to its square. Add 1. Example: 61 x 61 Subtract 1: 61 - 1 = 60 Square the difference:...
A

Easiest way to Find the Remainder on dividing by 7
Split the digits of the number in a group of 3 starting from unit’s place. Add the alternate group and then find their difference. Divide the difference by 7 and get the remainder. Consider the...

Difference between folate and folic acid
1. Folate or folic acid is a type of vitamin B, also referred to as vitamin M, vitamin B9, Vitamin Bc, pteroyl-L-glutamate as well as pteroyl-L-glutamic acid. 2. In pure chemistry, the term folate is...

Basic Maths Symbols
This is a list of commonly used Basic Math Symbols in the stream of mathematics. Symbol Symbol Name Meaning / definition Example ≠ not equal sign inequality 5 ≠...
A

Amrtha S.

define Rounding Numbers and give examples
Rounding makes numbers that are easier to work with in your head. Rounded numbers are only approximate. An exact answer generally can not be obtained using rounded numbers. Use rounding to get a answer...

### Looking for Class 10 Tuition ?

Learn from Best Tutors on UrbanPro.

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you

X

### Looking for Class 10 Tuition Classes?

The best tutors for Class 10 Tuition Classes are on UrbanPro

• Select the best Tutor
• Book & Attend a Free Demo
• Pay and start Learning

### Take Class 10 Tuition with the Best Tutors

The best Tutors for Class 10 Tuition Classes are on UrbanPro

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more