 true

Take Class 10 Tuition from the Best Tutors

• Affordable fees
• 1-1 or Group class
• Flexible Timings
• Verified Tutors

Search in

# How To Solve Exponents? Padmini Roy
15/06/2017 0 0

## 1. Simplifying fractional exponents:

The base b raised to the power of n/m is equal to:

bn/m = (mb)n = m(bn)

Example:

The base 2 raised to the power of 3/2 is equal to 1 divided by the base 2 raised to the power of 3:

23/2 = 2(23) = 2.828

## 2. Simplifying fractions with exponents:

Fractions with exponents:

(a / b)n = an / bn

Example:

(4/3)3 = 43 / 33 = 64 / 27 = 2.37

## 3. Negative fractional exponents:

The base b raised to the power of minus n/m is equal to 1 divided by the base b raised to the power of n/m:

b-n/m = 1 / bn/m = 1 / (mb)n

Example:

The base 2 raised to the power of minus 1/2 is equal to 1 divided by the base 2 raised to the power of 1/2:

2-1/2 = 1/21/2 = 1/2 = 0.7071

## 4. Fractions with negative exponents:

The base a/b raised to the power of minus n is equal to 1 divided by the base a/b raised to the power of n:

(a/b)-n = 1 / (a/b)n = 1 / (an/bn) = bn/an

Example:

The base 2 raised to the power of minus 3 is equal to 1 divided by the base 2 raised to the power of 3:

(2/3)-2 = 1 / (2/3)2 = 1 / (22/32) = 32/22 = 9/4 = 2.25

## 5. Multiplying fractional exponents:

Multiplying fractional exponents with same fractional exponent:

a n/mb n/m = (a b) n/m

Example:

23/2 ⋅ 33/2 = (2⋅3)3/2 = 63/2 =(63) = 216 = 14.7

Multiplying fractional exponents with same base:

a n/ma k/j = a (n/m)+(k/j)

Example:

23/2 ⋅ 24/3 = 2(3/2)+(4/3) = 7.127

Multiplying fractional exponents with different exponents and fractions:

a n/mb k/j

Example:

23/2 ⋅ 34/3 = (23) ⋅ 3(34) =2.828 ⋅ 4.327 = 12.237

## 6. Multiplying fractions with exponents:

Multiplying fractions with exponents with same fraction base:

(a / b) n ⋅ (a / b) m = (a / b)n+m

Example:

(4/3)3 ⋅ (4/3)2 = (4/3)3+2 = (4/3)5 = 45 / 35 = 4.214

Multiplying fractions with exponents with same exponent:

(a / b) n ⋅ (c / d) n = ((a / b)⋅(c / d)) n

Example:

(4/3)3 ⋅ (3/5)3 = ((4/3)⋅(3/5))3= (4/5)3 = 0.83 = 0.8⋅0.8⋅0.8 = 0.512

Multiplying fractions with exponents with different bases and exponents:

(a / b) n ⋅ (c / d) m

Example:

(4/3)3 ⋅ (1/2)2 = 2.37 / 0.25 = 9.481

## 7. Dividing fractional exponents:

Dividing fractional exponents with same fractional exponent:

a n/m / b n/m = (a / b) n/m

Example:

33/2 / 23/2 = (3/2)3/2 = 1.53/2 =√(1.53) = 3.375 = 1.837

Dividing fractional exponents with same base:

a n/m / a k/j = a (n/m)-(k/j)

Example:

23/2 / 24/3 = 2(3/2)-(4/3) = 2(1/6) =62 = 1.122

Dividing fractional exponents with different exponents and fractions:

a n/m / b k/j

Example:

23/2 / 34/3 = (23) / 3(34) =2.828 / 4.327 = 0.654

## 8. Dividing fractions with exponents:

Dividing fractions with exponents with same fraction base:

(a / b)n / (a / b)m = (a / b)n-m

Example:

(4/3)3 / (4/3)2 = (4/3)3-2 = (4/3)1 = 4/3 = 1.333

Dividing fractions with exponents with same exponent:

(a / b)n / (c / d)n = ((a / b)/(c / d))n = ((a⋅d / b⋅c))n

Example:

(4/3)3 / (3/5)3 = ((4/3)/(3/5))3= ((4⋅5)/(3⋅3))3 = (20/9)3 = 10.97

Dividing fractions with exponents with different bases and exponents:

(a / b) n / (c / d) m

Example:

(4/3)3 / (1/2)2 = 2.37 / 0.25 = 9.481

Adding fractional exponents is done by raising each exponent first and then adding:

an/m + bk/j

Example:

33/2 + 25/2 = √(33) + √(25) = √(27) + √(32) = 5.196 + 5.657 = 10.853

Adding same bases b and exponents n/m:

bn/m + bn/m = 2bn/m

Example:

42/3 + 42/3 = 2⋅42/3 = 2 ⋅3√(42) = 5.04

## 10. Subtracting fractional exponents:

Subtracting fractional exponents is done by raising each exponent first and then subtracting:

an/m - bk/j

Example:

33/2 - 25/2 = √(33) - √(25) = √(27) - √(32) = 5.196 - 5.657 = -0.488

Subtracting same bases b and exponents n/m:

3bn/m - bn/m = 2bn/m

Example:

3⋅42/3 - 42/3 = 2⋅42/3 = 2 ⋅3√(42) = 5.04

0 Dislike
Follow 0  ## Other Lessons for You

As Dhatoo Roop (अस् धातुरूप)
लट् लकार: (present tense ) एकवचनम् द्विवचनम् बहुवचनम् प्रथमपुरुष: अस्ति स्तः सन्ति मध्‍यमपुरुष: असि स्थः स्थ उत्‍तमपुरुष: अस्मि स्वः स्मः लृट् लकार:... Sandhi (संधि)
सन्धि (सम् + धि) शब्द का अर्थ है 'मेल' या जोड़। दो निकटवर्ती वर्णों के परस्पर मेल से जो विकार (परिवर्तन) होता है वह संधि कहलाता है। संस्कृत, में परस्पर स्वरो या वर्णों के मेल से उत्पन्न विकार को सन्धि... Present tense ending words
पुरुष एकवचन द्विवचन बहुवचन प्रथम पुरुष सः सा बालकः (ति ) तौ ते बालकौ ( तः ) ते ताः बालकाः ( न्ति ) मध्यम पुरुष त्वम् (सि ) युवाम्... दीर्घ सन्धि
दीर्घ संधि की परिभाषा जब दो शब्दों की संधि करते समय (अ, आ) के साथ (अ, आ) हो तो ‘आ‘ बनता है, जब (इ, ई) के साथ (इ, ई) हो तो ‘ई‘ बनता है, जब (उ, ऊ) के साथ (उ, ऊ) हो तो ‘ऊ‘... तत्पुरुष समास
द्वितीया तत्पुरुष समासअर्थ - द्वितीया तत्पुरुष समास तत्पुरुष समास का एक भेद है। जिसके एक पद (शब्द)में द्वितीया विभक्ति होती है। इसीलिए इसे द्वितीया तत्पुरुष समास कहा जाता है । नियम 1 जब किसी समस्त पद... ### Looking for Class 10 Tuition ?

Learn from Best Tutors on UrbanPro.

Are you a Tutor or Training Institute?

Join UrbanPro Today to find students near you

X

### Looking for Class 10 Tuition Classes?

The best tutors for Class 10 Tuition Classes are on UrbanPro

• Select the best Tutor
• Book & Attend a Free Demo
• Pay and start Learning  ### Take Class 10 Tuition with the Best Tutors

The best Tutors for Class 10 Tuition Classes are on UrbanPro 