UrbanPro
true

Find the best tutors and institutes for Class 12 Tuition

Find Best Class 12 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 8 with Free Lessons & Tips

Figure 8.6 shows a capacitor made of two circular plates each of radius 12 cm, and separated by 5.0 cm. The capacitor is being charged by an external source (not shown in the figure). The charging current is constant and equal to 0.15A. (a) Calculate the capacitance and the rate of change of potential difference between the plates. (b) Obtain the displacement current across the plates. (c) Is Kirchhoff’s first rule (junction rule) valid at each plate of the capacitor? Explain.

Radius of each circular plate, r = 12 cm = 0.12 m

Distance between the plates, d = 5 cm = 0.05 m

Charging current, I = 0.15 A

Permittivity of free space, = 8.85 × 10−12 C2 N−1 m−2

(a) Capacitance between the two plates is given by the relation,

C

Where,

A = Area of each plate

Charge on each plate, q = CV

Where,

V = Potential difference across the plates

Differentiation on both sides with respect to time (t) gives:

Therefore, the change in potential difference between the plates is 1.87 ×109 V/s.

(b) The displacement current across the plates is the same as the conduction current. Hence, the displacement current, id is 0.15 A.

(c) Yes

Kirchhoff’s first rule is valid at each plate of the capacitor provided that we take the sum of conduction and displacement for current.

Comments

A parallel plate capacitor (Fig. 8.7) made of circular plates each of radius R = 6.0 cm has a capacitance C = 100 pF. The capacitor is connected to a 230 V ac supply with a (angular) frequency of 300 rad s–1 . (a) What is the rms value of the conduction current? (b) Is the conduction current equal to the displacement current? (c) Determine the amplitude of B at a point 3.0 cm from the axis between the plates.

Radius of each circular plate, R = 6.0 cm = 0.06 m

Capacitance of a parallel plate capacitor, C = 100 pF = 100 × 10−12 F

Supply voltage, V = 230 V

Angular frequency, ω = 300 rad s−1

(a) Rms value of conduction current, I

Where,

XC = Capacitive reactance

I = V × ωC

= 230 × 300 × 100 × 10−12

= 6.9 × 10−6 A

= 6.9 μA

Hence, the rms value of conduction current is 6.9 μA.

(b) Yes, conduction current is equal to displacement current.

(c) Magnetic field is given as:

B

Where,

μ0 = Free space permeability

I0 = Maximum value of current =

r = Distance between the plates from the axis = 3.0 cm = 0.03 m

B

= 1.63 × 10−11 T

Hence, the magnetic field at that point is 1.63 × 10−11 T.

Comments

What physical quantity is the same for X-rays of wavelength 10–10m, red light of wavelength 6800 Å and radiowaves of wavelength 500m?

The speed of light (3 × 108 m/s) in a vacuum is the same for all wavelengths. It is independent of the wavelength in the vacuum.

Comments

A plane electromagnetic wave travels in vacuum along z-direction. What can you say about the directions of its electric and magnetic field vectors? If the frequency of the wave is 30 MHz, what is its wavelength?

The electromagnetic wave travels in a vacuum along the z-direction. The electric field (E) and the magnetic field (H) are in the x-y plane. They are mutually perpendicular.

Frequency of the wave, ν = 30 MHz = 30 × 106 s−1

Speed of light in a vacuum, c = 3 × 108 m/s

Wavelength of a wave is given as:

Comments

A radio can tune in to any station in the 7.5 MHz to 12 MHz band. What is the corresponding wavelength band?

A radio can tune to minimum frequency, ν1 = 7.5 MHz= 7.5 × 106 Hz

Maximum frequency, ν2 = 12 MHz = 12 × 106 Hz

Speed of light, c = 3 × 108 m/s

Corresponding wavelength for ν1 can be calculated as:

Corresponding wavelength for ν2 can be calculated as:

Thus, the wavelength band of the radio is 40 m to 25 m.

Comments

A charged particle oscillates about its mean equilibrium position with a frequency of 109 Hz. What is the frequency of the electromagnetic waves produced by the oscillator?

The frequency of an electromagnetic wave produced by the oscillator is the same as that of a charged particle oscillating about its mean position i.e., 109 Hz.

Comments

The amplitude of the magnetic field part of a harmonic electromagnetic wave in vacuum is B0 = 510 nT. What is the amplitude of the electric field part of the wave?

Amplitude of magnetic field of an electromagnetic wave in a vacuum,

B0 = 510 nT = 510 × 10−9 T

Speed of light in a vacuum, c = 3 × 108 m/s

Amplitude of electric field of the electromagnetic wave is given by the relation,

E = cB0

= 3 × 108 × 510 × 10−9 = 153 N/C

Therefore, the electric field part of the wave is 153 N/C.

Comments

Suppose that the electric field amplitude of an electromagnetic wave is E0 = 120 N/C and that its frequency is ν = 50.0 MHz. (a) Determine, B0 ,ω, k, and λ. (b) Find expressions for E and B.

Electric field amplitude, E0 = 120 N/C

Frequency of source, ν = 50.0 MHz = 50 × 106 Hz

Speed of light, c = 3 × 108 m/s

(a) Magnitude of magnetic field strength is given as:

Angular frequency of source is given as:

ω = 2πν

= 2π × 50 × 106

= 3.14 × 108 rad/s

Propagation constant is given as:

Wavelength of wave is given as:

Comments

The terminology of different parts of the electromagnetic spectrum is given in the text. Use the formula E = hν (for energy of a quantum of radiation: photon) and obtain the photon energy in units of eV for different parts of the electromagnetic spectrum. In what way are the different scales of photon energies that you obtain related to the sources of electromagnetic radiation?

Energy of a photon is given as:

Where,

h = Planck’s constant = 6.6 × 10−34 Js

c = Speed of light = 3 × 108 m/s

λ = Wavelength of radiation

The given table lists the photon energies for different parts of an electromagnetic spectrum for differentλ.

Comments

In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of 2.0 × 1010 Hz and amplitude 48 V m–1 .(a) What is the wavelength of the wave? (b) What is the amplitude of the oscillating magnetic field? (c) Show that the average energy density of the E field equals the average energy density of the B field. [c = 3 × 108 m s–1.]

Frequency of the electromagnetic wave, ν = 2.0 × 1010 Hz

Electric field amplitude, E0 = 48 V m−1

Speed of light, c = 3 × 108 m/s

(a) Wavelength of a wave is given as:

(b) Magnetic field strength is given as:

(c) Energy density of the electric field is given as:

And, energy density of the magnetic field is given as:

Where,

0 = Permittivity of free space

μ0 = Permeability of free space

We have the relation connecting E and B as:

E = cB … (1)

Where,

… (2)

Putting equation (2) in equation (1), we get

Squaring both sides, we get

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 12 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 12 Tuition Classes?

Find best tutors for Class 12 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 12 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more