CBSE - Class 11 Mathematics Binomial Theorem Worksheet
1.
Expand each of the expressions $(2x - 3)^6$
2.
Prove that $\sum_{r=0}^{n} {^nC_r} 3^r = 4^n$.
3.
Using binomial theorem, evaluate each of the following: 8. $(101)^4$
4.
Using binomial theorem, evaluate each of the following: 9. $(99)^5$
5.
Show that $9^{n+1} – 8n – 9$ is divisible by 64, whenever $n$ is a positive integer.
6.
Find $(x + 1)^6 + (x – 1)^6$. Hence or otherwise evaluate $(\sqrt{2} + 1)^6 + (\sqrt{2} – 1)^6$.
7.
Find $(a + b)^4 – (a – b)^4$. Hence, evaluate $(\sqrt{3} + \sqrt{2})^4 – (\sqrt{3} – \sqrt{2})^4$.
8.
Expand each of the expressions $(\frac{x}{3} + \frac{1}{x})^5$
9.
Using Binomial Theorem, indicate which number is larger $(1.1)^{10000}$ or 1000.
10.
Using binomial theorem, evaluate each of the following: 7. $(102)^5$
11.
Expand each of the expressions 2. $(\frac{2}{x} - \frac{x}{2})^5$
12.
Using binomial theorem, evaluate each of the following: 6. $(96)^3$
13.
Expand each of the expressions 1. $(1-2x)^5$
14.
Expand each of the expressions 5. $(x + \frac{1}{x})^6$
CBSE - Class 11 Mathematics Binomial Theorem Worksheet
Answers