UrbanPro

Your Worksheet is Ready

CBSE - Class 11 Mathematics Binomial Theorem Worksheet

1.

Expand each of the expressions $(2x - 3)^6$

2.
Prove that $\sum_{r=0}^{n} {^nC_r} 3^r = 4^n$.
3.
Using binomial theorem, evaluate each of the following: 8. $(101)^4$
4.
Using binomial theorem, evaluate each of the following: 9. $(99)^5$
5.
Show that $9^{n+1} – 8n – 9$ is divisible by 64, whenever $n$ is a positive integer.
6.
Find $(x + 1)^6 + (x – 1)^6$. Hence or otherwise evaluate $(\sqrt{2} + 1)^6 + (\sqrt{2} – 1)^6$.
7.
Find $(a + b)^4 – (a – b)^4$. Hence, evaluate $(\sqrt{3} + \sqrt{2})^4 – (\sqrt{3} – \sqrt{2})^4$.
8.

Expand each of the expressions $(\frac{x}{3} + \frac{1}{x})^5$

9.
Using Binomial Theorem, indicate which number is larger $(1.1)^{10000}$ or 1000.
10.
Using binomial theorem, evaluate each of the following: 7. $(102)^5$
11.

Expand each of the expressions 2. $(\frac{2}{x} - \frac{x}{2})^5$

12.
Using binomial theorem, evaluate each of the following: 6. $(96)^3$
13.

Expand each of the expressions 1. $(1-2x)^5$

14.

Expand each of the expressions 5. $(x + \frac{1}{x})^6$

CBSE - Class 11 Mathematics Binomial Theorem Worksheet

Answers

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All