UrbanPro

Your Worksheet is Ready

CBSE - Class 11 Mathematics Trigonometric Functions Worksheet

1.
Find the value of: (i) $\sin 75^{\circ}$
2.
Find the values of the trigonometric functions: $\sin (-\frac{11\pi}{3})$
3.
A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?
4.
Prove the following: $\frac{\sin x + \sin 3x}{\cos x + \cos 3x} = \tan 2x$
5.
Find the values of the trigonometric functions: $\cot (-\frac{15\pi}{4})$
6.
Prove that: $2\sin^2 \frac{3\pi}{4} + 2\cos^2 \frac{\pi}{4} + 2\sec^2 \frac{\pi}{3} = 10$
7.
Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm (Use $\pi = \frac{22}{7}$).
8.
Prove that: $\sin x + \sin 3x + \sin 5x + \sin 7x = 4 \cos x \cos 2x \sin 4x$
9.
Find the values of other five trigonometric functions if $\sec x = \frac{13}{5}$, $x$ lies in fourth quadrant.
10.
Prove the following: $\frac{\tan(\frac{\pi}{4} + x)}{\tan(\frac{\pi}{4} - x)} = (\frac{1+\tan x}{1-\tan x})^2$
11.
If in two circles, arcs of the same length subtend angles $60^{\circ}$ and $75^{\circ}$ at the centre, find the ratio of their radii.
12.
Prove the following: $\cos (\frac{\pi}{4} - x) \cos (\frac{\pi}{4} - y) - \sin (\frac{\pi}{4} - x) \sin (\frac{\pi}{4} - y) = \sin (x+y)$
13.
Prove that: $\frac{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)} = \tan 6x$
14.
Find $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$ in each of the following : $\sin x = \frac{1}{4}$, $x$ in quadrant II
15.
Prove the following: $\cos^2 2x - \cos^2 6x = \sin 4x \sin 8x$
16.
In a circle of diameter 40 cm, the length of a chord is 20 cm. Find the length of minor arc of the chord.
17.
Find $\sin \frac{x}{2}$, $\cos \frac{x}{2}$ and $\tan \frac{x}{2}$ in each of the following : $\cos x = -\frac{1}{3}$, $x$ in quadrant III
18.
Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length (i) 10 cm
19.
Prove the following: $\frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x$
20.
Prove the following: $\cos(\frac{3\pi}{4} + x) - \cos(\frac{3\pi}{4} - x) = -\sqrt{2} \sin x$

CBSE - Class 11 Mathematics Trigonometric Functions Worksheet

Answers

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All