UrbanPro
true

Find the best tutors and institutes for Class 12 Tuition

Find Best Class 12 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 6.3 with Free Lessons & Tips

Find the slope of the tangent to the curve y = 3x4 − 4x at x = 4.

Slope of tangent is dy/dx

 at x=4,

 ans

Comments

Find the slope of the normal to the curve x = 1 − sin θy = cos2θ at .

x = 1 - a sinθ
differentiate x with respect to θ,
dx/dθ = 0 - a.d(sinθ)/dθ = - a.cosθ ------(1)
y = bcos²θ
differentiate y with respect to θ,
dy/dθ = b. d(cos²θ)/dθ
= b. 2cosθ. (-sinθ)
= -2bsinθ.cosθ --------(2)

dividing equations (2) by (1),

dividing equations (2) by (1),
dy/dx = -2bsinθ.cosθ/-acosθ = 2b sinθ/a
at θ = π/2 , dy/dx = 2bsinπ/2/a = 2b/a
so, slope of normal = -1/slope of tangent
= -1/(2b/a) = -a/2b

Comments

Find the equations of the tangent and normal to the parabola y2 = 4ax at the point (at2, 2at).

The equation of the given parabola is y2 = 4ax.

On differentiating y2 = 4ax with respect to x, we have:

∴The slope of the tangent atis

Then, the equation of the tangent atis given by,

y − 2at =

Now, the slope of the normal atis given by,

Thus, the equation of the normal at (at2, 2at) is given as:

Comments

Find the slope of the tangent to curve y = x3 − + 1 at the point whose x-coordinate is 2.

first, do the derivative of the given function (mean, find dy/dx )

Then put the given value of x in the first derivative. 

 

3(2*2) - 1

11. 

Therefore, 11 is the answer. 

Comments

Find the slope of the normal to the curve x = acos3θy = asin3θ at.

It is given that x = acos3θ and y = asin3θ.

Therefore, the slope of the tangent at is given by,

Hence, the slope of the normal at

Comments

Find a point on the curve y = (x − 2)2 at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).

Slope of tangent at a point (x,y) on the given curve is 

It is told that the tangent is parallel to the chord joining (2,0) and (4,4). So slopes of the two lines i.e the tangent and the chord should be equal.

 

Slope of chord is  

 

So 2(x-2) = 2

So x=3

 

The corresponding y coordinate  can be found by putting x=3 on the equation of the curve. So y=.

 

Answer = (3,1)

Comments

Prove that the curves x = y2 and xy = k cut at right angles if 8k2 = 1. [Hint: Two curves intersect at right angle if the tangents to the curves at the point of intersection are perpendicular to each other.]

The equations of the given curves are given as

Putting x = y2 in xy = k, we get:

Thus, the point of intersection of the given curves is.

Differentiating x = y2 with respect to x, we have:

Therefore, the slope of the tangent to the curve x = y2 atis

On differentiating xy = k with respect to x, we have:

∴ Slope of the tangent to the curve xy = katis given by,

We know that two curves intersect at right angles if the tangents to the curves at the point of intersection i.e., at are perpendicular to each other.

This implies that we should have the product of the tangents as − 1.

Thus, the given two curves cut at right angles if the product of the slopes of their respective tangents at is −1.

Hence, the given two curves cut at right angels if 8k2 = 1.

Comments

Find the slope of the tangent to the curvex ≠ 2 at x = 10.

The given curve is.

Thus, the slope of the tangent at x = 10 is given by,

Hence, the slope of the tangent at x = 10 is

Comments

Find the slope of the tangent to the curve y = x3 − 3x + 2 at the point whose x-coordinate is 3.

The given curve is.

The slope of the tangent to a curve at (x0, y0) is.

Hence, the slope of the tangent at the point where the x-coordinate is 3 is given by,

Comments

Find points at which the tangent to the curve y = x3 − 3x2 − 9x + 7 is parallel to the x-axis.

The equation of the given curve is

Now, the tangent is parallel to the x-axis if the slope of the tangent is zero.

When x = 3, y = (3)3 − 3 (3)2 − 9 (3) + 7 = 27 − 27 − 27 + 7 = −20.

When x = −1, y = (−1)3 − 3 (−1)2 − 9 (−1) + 7 = −1 − 3 + 9 + 7 = 12.

Hence, the points at which the tangent is parallel to the x-axis are (3, −20) and

(−1, 12).

Comments

Find the point on the curve y = x3 − 11x + 5 at which the tangent is y = x − 11.

The equation of the given curve is y = x3 − 11x + 5.

The equation of the tangent to the given curve is given as y = x − 11 (which is of the form y = mx + c).

∴Slope of the tangent = 1

Now, the slope of the tangent to the given curve at the point (x, y) is given by,

Then, we have:

When x = 2, y = (2)3 − 11 (2) + 5 = 8 − 22 + 5 = −9.

When x = −2, y = (−2)3 − 11 (−2) + 5 = −8 + 22 + 5 = 19.

Hence, the required points are (2, −9) and (−2, 19).
But, both these points should satisfy the equation of the tangent as there would be point of contact between tangent and the curve.
∴ (2, −9) is the required point as (−2, 19) is not satisfying the given equation of tangent.

Comments

Find the equation of all lines having slope −1 that are tangents to the curve .

The equation of the given curve is.

The slope of the tangents to the given curve at any point (x, y) is given by,

If the slope of the tangent is −1, then we have:

When x = 0, y = −1 and when x = 2, y = 1.

Thus, there are two tangents to the given curve having slope −1. These are passing through the points (0, −1) and (2, 1).

∴The equation of the tangent through (0, −1) is given by,

∴The equation of the tangent through (2, 1) is given by,

y − 1 = −1 (x − 2)

y − 1 = − x + 2

y + x − 3 = 0

Hence, the equations of the required lines are y + x + 1 = 0 and y + x − 3 = 0.

Comments

Find the equation of all lines having slope 2 which are tangents to the curve.

The equation of the given curve is.

The slope of the tangent to the given curve at any point (x, y) is given by,

If the slope of the tangent is 2, then we have:

Hence, there is no tangent to the given curve having slope 2.

Comments

Find the equations of all lines having slope 0 which are tangent to the curve .

The equation of the given curve is.

The slope of the tangent to the given curve at any point (x, y) is given by,

If the slope of the tangent is 0, then we have:

When x = 1,

∴The equation of the tangent throughis given by,

Hence, the equation of the required line is

Comments

Find points on the curve  at which the tangents are

(i) parallel to x-axis (ii) parallel to y-axis

The equation of the given curve is.

On differentiating both sides with respect to x, we have:

(i) The tangent is parallel to the x-axis if the slope of the tangent is i.e., 0 which is possible if x = 0.

Then, for x = 0

Hence, the points at which the tangents are parallel to the x-axis are

(0, 4) and (0, − 4).

(ii) The tangent is parallel to the y-axis if the slope of the normal is 0, which givesy = 0.

Then, for y = 0.

Hence, the points at which the tangents are parallel to the y-axis are

(3, 0) and (− 3, 0).

Comments

Find the equations of the tangent and normal to the given curves at the indicated points:

(i) y = x4 − 6x3 + 13x2 − 10x + 5 at (0, 5)

(ii) y = x4 − 6x3 + 13x2 − 10x + 5 at (1, 3)

(iii) y = x3 at (1, 1)

(iv) y = x2 at (0, 0)

(v) x = cos ty = sin t at 

(i) The equation of the curve is y = x4 − 6x3 + 13x2 − 10x + 5.

On differentiating with respect to x, we get:

Thus, the slope of the tangent at (0, 5) is −10. The equation of the tangent is given as:

y − 5 = − 10(x − 0)

y − 5 = − 10x

⇒ 10x + y = 5

The slope of the normal at (0, 5) is

Therefore, the equation of the normal at (0, 5) is given as:

(ii) The equation of the curve is y = x4 − 6x3 + 13x2 − 10x + 5.

On differentiating with respect to x, we get:

Thus, the slope of the tangent at (1, 3) is 2. The equation of the tangent is given as:

The slope of the normal at (1, 3) is

Therefore, the equation of the normal at (1, 3) is given as:

(iii) The equation of the curve is y = x3.

On differentiating with respect to x, we get:

Thus, the slope of the tangent at (1, 1) is 3 and the equation of the tangent is given as:

The slope of the normal at (1, 1) is

Therefore, the equation of the normal at (1, 1) is given as:

(iv) The equation of the curve is y = x2.

On differentiating with respect to x, we get:

Thus, the slope of the tangent at (0, 0) is 0 and the equation of the tangent is given as:

y − 0 = 0 (x − 0)

y = 0

The slope of the normal at (0, 0) is , which is not defined.

Therefore, the equation of the normal at (x0, y0) = (0, 0) is given by

(v) The equation of the curve is x = cos t, y = sin t.

∴The slope of the tangent atis −1.

When

Thus, the equation of the tangent to the given curve at is

The slope of the normal atis

Therefore, the equation of the normal to the given curve at is

Comments

Find the equation of the tangent line to the curve y = x2 − 2x + 7 which is

(a) parallel to the line 2x − y + 9 = 0

(b) perpendicular to the line 5y − 15x = 13.

The equation of the given curve is.

On differentiating with respect to x, we get:

(a) The equation of the line is 2xy + 9 = 0.

2xy + 9 = 0 ⇒ y = 2x + 9

This is of the form y = mx + c.

∴Slope of the line = 2

If a tangent is parallel to the line 2xy + 9 = 0, then the slope of the tangent is equal to the slope of the line.

Therefore, we have:

2 = 2x − 2

Now, x = 2

y = 4 − 4 + 7 = 7

Thus, the equation of the tangent passing through (2, 7) is given by,

Hence, the equation of the tangent line to the given curve (which is parallel to line 2xy + 9 = 0) is.

(b) The equation of the line is 5y − 15x = 13.

5y − 15x = 13 ⇒

This is of the form y = mx + c.

∴Slope of the line = 3

If a tangent is perpendicular to the line 5y − 15x = 13, then the slope of the tangent is

Thus, the equation of the tangent passing throughis given by,

Hence, the equation of the tangent line to the given curve (which is perpendicular to line 5y − 15x = 13) is.

Comments

Show that the tangents to the curve y = 7x3 + 11 at the points where x = 2 and x = −2 are parallel.

The equation of the given curve is y = 7x3 + 11.

The slope of the tangent to a curve at (x0, y0) is.
Therefore, the slope of the tangent at the point where x = 2 is given by,

It is observed that the slopes of the tangents at the points where x = 2 and x = −2 are equal.

Hence, the two tangents are parallel.

Comments

Find the points on the curve y = x3 at which the slope of the tangent is equal to the y-coordinate of the point.

The equation of the given curve is y = x3.

The slope of the tangent at the point (x, y) is given by,

When the slope of the tangent is equal to the y-coordinate of the point, then y = 3x2.

Also, we have y = x3.

∴3x2 = x3

x2 (x − 3) = 0

x = 0, x = 3

When x = 0, then y = 0 and when x = 3, then y = 3(3)2 = 27.

Hence, the required points are (0, 0) and (3, 27).

Comments

For the curve y = 4x3 − 2x5, find all the points at which the tangents passes through the origin.

The equation of the given curve is y = 4x3 − 2x5.

Therefore, the slope of the tangent at a point (x, y) is 12x2 − 10x4.

The equation of the tangent at (x, y) is given by,

When the tangent passes through the origin (0, 0), then X = Y = 0.

Therefore, equation (1) reduces to:

Also, we have

When x = 0, y =

When x = 1, y = 4 (1)3 − 2 (1)5 = 2.

When x = −1, y = 4 (−1)3 − 2 (−1)5 = −2.

Hence, the required points are (0, 0), (1, 2), and (−1, −2).

Comments

Find the points on the curve x2 + y2 − 2x − 3 = 0 at which the tangents are parallel to the x-axis.

The equation of the given curve is x2 + y2 − 2x − 3 = 0.

On differentiating with respect to x, we have:

Now, the tangents are parallel to the x-axis if the slope of the tangent is 0.

But, x2 + y2 − 2x − 3 = 0 for x = 1.

y2 = 4 ⇒

Hence, the points at which the tangents are parallel to the x-axis are (1, 2) and (1, −2).

Comments

Find the equation of the normal at the point (am2am3) for the curve ay2 = x3.

The equation of the given curve is ay2 = x3.

On differentiating with respect to x, we have:

The slope of a tangent to the curve at (x0, y0) is.

The slope of the tangent to the given curve at (am2, am3) is

∴ Slope of normal at (am2, am3) =

Hence, the equation of the normal at (am2, am3) is given by,

yam3 =

Comments

Find the equation of the normals to the curve y = x3 + 2+ 6 which are parallel to the line x + 14y + 4 = 0.

The equation of the given curve is y = x3 + 2x + 6.

The slope of the tangent to the given curve at any point (x, y) is given by,

∴ Slope of the normal to the given curve at any point (x, y) =

The equation of the given line is x + 14y + 4 = 0.

x + 14y + 4 = 0 ⇒ (which is of the form y = mx + c)

∴Slope of the given line =

If the normal is parallel to the line, then we must have the slope of the normal being equal to the slope of the line.

When x = 2, y = 8 + 4 + 6 = 18.

When x = −2, y = − 8 − 4 + 6 = −6.

Therefore, there are two normals to the given curve with slopeand passing through the points (2, 18) and (−2, −6).

Thus, the equation of the normal through (2, 18) is given by,

And, the equation of the normal through (−2, −6) is given by,

Hence, the equations of the normals to the given curve (which are parallel to the given line) are

Comments

Find the equations of the tangent and normal to the hyperbola at the point.

Differentiatingwith respect to x, we have:

Therefore, the slope of the tangent atis .

Then, the equation of the tangent atis given by,

Now, the slope of the normal atis given by,

Hence, the equation of the normal atis given by,

Comments

Find the equation of the tangent to the curve  which is parallel to the line 4x − 2y + 5 = 0.

The equation of the given curve is

The slope of the tangent to the given curve at any point (x, y) is given by,

The equation of the given line is 4x − 2y + 5 = 0.

4x − 2y + 5 = 0 ⇒ (which is of the form

∴Slope of the line = 2

Now, the tangent to the given curve is parallel to the line 4x − 2y − 5 = 0 if the slope of the tangent is equal to the slope of the line.

∴Equation of the tangent passing through the point is given by,

Hence, the equation of the required tangent is.

Comments

The slope of the normal to the curve y = 2x2 + 3 sin x at x = 0 is

(A) 3 (B) (C) −3 (D)

The equation of the given curve is.

Slope of the tangent to the given curve at x = 0 is given by,

Hence, the slope of the normal to the given curve at x = 0 is

The correct answer is D.

Comments

The line y = x + 1 is a tangent to the curve y2 = 4x at the point

(A) (1, 2) (B) (2, 1) (C) (1, −2) (D) (−1, 2)

The equation of the given curve is.

Differentiating with respect to x, we have:

Therefore, the slope of the tangent to the given curve at any point (xy) is given by,

The given line is y = x + 1 (which is of the form y = mx + c)

∴ Slope of the line = 1

The line y = x + 1 is a tangent to the given curve if the slope of the line is equal to the slope of the tangent. Also, the line must intersect the curve.

Thus, we must have:

Hence, the line y = x + 1 is a tangent to the given curve at the point (1, 2).

The correct answer is A.

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 12 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 12 Tuition Classes?

Find best tutors for Class 12 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 12 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more