UrbanPro
true

Find the best tutors and institutes for Class 10 Tuition

Find Best Class 10 Tuition

Please select a Category.

Please select a Locality.

No matching category found.

No matching Locality found.

Outside India?

Learn Exercise 13.3 with Free Lessons & Tips

A metallic sphere of radius 4.2 cm is melted and recast into the shape of a cylinder of radius 6 cm. Find the height of the cylinder.

Radius (r1) of hemisphere = 4.2 cm

Radius (r2) of cylinder = 6 cm

Let the height of the cylinder be h.

The object formed by recasting the hemisphere will be the same in volume.

Volume of sphere = Volume of cylinder

Hence, the height of the cylinder so formed will be 2.74 cm.

Comments

Metallic spheres of radii 6 cm, 8 cm and 10 cm, respectively, are melted to form a single solid sphere. Find the radius of the resulting sphere.

Radius (r1) of 1st sphere = 6 cm

Radius (r2) of 2nd sphere = 8 cm

Radius (r3) of 3rd sphere = 10 cm

Let the radius of the resulting sphere be r.

The object formed by recasting these spheres will be same in volume as the sum of the volumes of these spheres.

Volume of 3 spheres = Volume of resulting sphere

Therefore, the radius of the sphere so formed will be 12 cm.

Comments

A 20 m deep well with diameter 7 m is dug and the earth from digging is evenly spread out to form a platform 22 m by 14 m. Find the height of the platform.

The shape of the well will be cylindrical.

Depth (h) of well = 20 m

Radius (r) of circular end of well = 

Area of platform = Length × Breadth = 22 × 14 m2

Let height of the platform = H

Volume of soil dug from the well will be equal to the volume of soil scattered on the platform.

Volume of soil from well = Volume of soil used to make such platform

Therefore, the height of such platform will be 2.5 m.

Comments

A well of diameter 3 m is dug 14 m deep. The earth taken out of it has been spread evenly all around it in the shape of a circular ring of width 4 m to form an embankment. Find the height of the embankment.

The shape of the well will be cylindrical.

Depth (h1) of well = 14 m

Radius (r1) of the circular end of well = 

Width of embankment = 4 m

From the figure, it can be observed that our embankment will be in a cylindrical shape having outer radius (r2) as and inner radius (r1) as.

Let the height of embankment be h2.

Volume of soil dug from well = Volume of earth used to form embankment

Therefore, the height of the embankment will be 1.125 m.

Comments

A container shaped like a right circular cylinder having diameter 12 cm and height 15 cm is full of ice cream. The ice cream is to be filled into cones of height 12 cm and diameter 6 cm, having a hemispherical shape on the top. Find the number of such cones which can be filled with ice cream.

Coins are cylindrical in shape.

Height (h1) of cylindrical coins = 2 mm = 0.2 cm

Radius (r) of circular end of coins = 

Let n coins be melted to form the required cuboids.

Volume of n coins = Volume of cuboids

Therefore, the number of coins melted to form such a cuboid is 400.

Comments

How many silver coins, 1.75 cm in diameter and of thickness 2 mm, must be melted to form a cuboid of dimensions 5.5 cm × 10 cm × 3.5 cm?

Height (h1) of cylindrical bucket = 32 cm

Radius (r1) of circular end of bucket = 18 cm

Height (h2) of conical heap = 24 cm

Let the radius of the circular end of conical heap be r2.

The volume of sand in the cylindrical bucket will be equal to the volume of sand in the conical heap.

Volume of sand in the cylindrical bucket = Volume of sand in conical heap

r2 = = 36 cm

Slant height = 

Therefore, the radius and slant height of the conical heap are 36 cm and respectively.

Comments

A cylindrical bucket, 32 cm high and with radius of base 18 cm, is filled with sand. This bucket is emptied on the ground and a conical heap of sand is formed. If the height of the conical heap is 24 cm, find the radius and slant height of the heap.

Height (h1) of cylindrical bucket = 32 cm

Radius (r1) of circular end of bucket = 18 cm

Height (h2) of conical heap = 24 cm

Let the radius of the circular end of conical heap be r2.

The volume of sand in the cylindrical bucket will be equal to the volume of sand in the conical heap.

Volume of sand in the cylindrical bucket = Volume of sand in conical heap

r2 = = 36 cm

Slant height = 

Therefore, the radius and slant height of the conical heap are 36 cm and respectively.

Comments

Water in a canal, 6 m wide and 1.5 m deep, is flowing with a speed of 10 km/h. How much area will it irrigate in 30 minutes, if 8 cm of standing water is needed?

Consider an area of cross-section of canal as ABCD.

Area of cross-section = 6 × 1.5 = 9 m2

Speed of water = 10 km/h = 

Volume of water that flows in 1 minute from canal = =1500 m3

Volume of water that flows in 30 minutes from canal = 30 × 1500 = 45000 m3

Let the irrigated area be A. Volume of water irrigating the required area will be equal to the volume of water that flowed in 30 minutes from the canal.

Vol. of water flowing in 30 minutes from canal = Vol. of water irrigating the reqd. area

A = 562500 m2

Therefore, area irrigated in 30 minutes is 562500 m2.

Comments

A farmer connects a pipe of internal diameter 20 cm from a canal into a cylindrical tank in her field, which is 10 m in diameter and 2 m deep. If water flows through the pipe at the rate of 3 km/h, in how much time will the tank be filled?

Consider an area of cross-section of pipe as shown in the figure.

Radius (r1) of circular end of pipe = 

Area of cross-section = 

Speed of water = 3 km/h = 

Volume of water that flows in 1 minute from pipe = 50 ×= 0.5π m3

Volume of water that flows in t minutes from pipe = t × 0.5π m3

Radius (r2) of circular end of cylindrical tank = m

Depth (h2) of cylindrical tank = 2 m

Let the tank be filled completely in t minutes.

Volume of water filled in tank in t minutes is equal to the volume of water flowed in t minutes from the pipe.

Volume of water that flows in t minutes from pipe = Volume of water in tank

t × 0.5π = π ×(r2)2 ×h2

t × 0.5 = 52 ×2

t = 100

Therefore, the cylindrical tank will be filled in 100 minutes.

Comments

How helpful was it?

How can we Improve it?

Please tell us how it changed your life *

Please enter your feedback

Please enter your question below and we will send it to our tutor communities to answer it *

Please enter your question

Please select your tags

Please select a tag

Name *

Enter a valid name.

Email *

Enter a valid email.

Email or Mobile Number: *

Please enter your email or mobile number

Sorry, this phone number is not verified, Please login with your email Id.

Password: *

Please enter your password

By Signing Up, you agree to our Terms of Use & Privacy Policy

Thanks for your feedback

About UrbanPro

UrbanPro.com helps you to connect with the best Class 10 Tuition in India. Post Your Requirement today and get connected.

X

Looking for Class 10 Tuition Classes?

Find best tutors for Class 10 Tuition Classes by posting a requirement.

  • Post a learning requirement
  • Get customized responses
  • Compare and select the best

Looking for Class 10 Tuition Classes?

Get started now, by booking a Free Demo Class

This website uses cookies

We use cookies to improve user experience. Choose what cookies you allow us to use. You can read more about our Cookie Policy in our Privacy Policy

Accept All
Decline All

UrbanPro.com is India's largest network of most trusted tutors and institutes. Over 55 lakh students rely on UrbanPro.com, to fulfill their learning requirements across 1,000+ categories. Using UrbanPro.com, parents, and students can compare multiple Tutors and Institutes and choose the one that best suits their requirements. More than 7.5 lakh verified Tutors and Institutes are helping millions of students every day and growing their tutoring business on UrbanPro.com. Whether you are looking for a tutor to learn mathematics, a German language trainer to brush up your German language skills or an institute to upgrade your IT skills, we have got the best selection of Tutors and Training Institutes for you. Read more